Diagnostic application of new sequencing technologies

Chris Mattocks
National Genetics Reference Laboratory (Wessex)

Why new sequencing technologies?

- Increased speed of current tests
- Increased capacity for current tests
- Reduced cost
- Increased scope of current tests
- Development of new test areas

Platforms

Company	Platform	Pre-amplification	Basis of sequencing	Capacity
Roche	GS-FLX	emPCR	Pyrosequencing	2x108bp/run
Applied Biosystems	SOLiD	emPCR	Extension by ligation	3x10 ⁹ bp/run
Illumina (Solexa)	Genome Analyzer	bridge amplification	Reversable termination	4x10 ⁹ bp/run
Helicos (tSMS)	Heliscope	none	Reversable termination	2x10 ⁹ bp/day
Pacific Biosciences		none	Single molecule real time sequencing (SMRT)	>1x10 ⁴ bp/sec
Visigen		none	Real time FRET baseb identification	>1x10 ⁴ bp/sec
ZSG		for labelling	Direct visualisation by TEM	?
Various	Nanopore sequencing	none	Real time electronic base identification	>1x10 ⁴ bp/sec

Various others –

GE Healthcare, Complete genomics, BioNanoMatrix / Agilent, IntellegentBioSystems, NABsys, Reveo

Potential applications

Parallel sequencing amenable to a wide range of applications including:

Mutation scanning
RNA analysis
Genome architecture / structural analysis
Methylation analysis

Expression analysis

Tumour profiling / deep sequencing

Quantitative analysis / CNVs

Factors for consideration

- Length of fragment sequenced
 - GS-FLX ~300bp
 - SOLiD / Genome Analyzer 25-30bp
- Methodology
 - GS-FLX: pyrosequencing not good for homopolymer regions
- Data / IT infrastructure
 - Amount of data generated and how analysed / stored
- Analysis
 - SOLiD: 2 base encoding very accurate (may reduce required depth)
- Amount of starting material
- Workflow
 - Breakdown between prep time / machine time

Potential diagnostic strategies

- Whole genome sequencing Sequence entire genome analyse regions of interest
 - ☑ Simple / standard methodology for all referrals
 - Pre-emptive sequencing
 - Cost
 - Data volume
 - Who does the work?
 - How data handled / interpreted?
 - Incidental findings?
 - **■** Unused data?
 - Not currently feasible

Potential diagnostic strategies

- Universal targeting Target particular region[s] of clinical interest - analyse regions relevant for patient
 - Capacity wastage limited
 - ☑ Currently feasible?
 - **区** Choice of regions?
 - **■** Utilisation of capacity?
 - Lack of flexibility
 - **☑** Shelf life?

Potential diagnostic strategies

- Customised targeting Specific targeting for each patient
 - Standardised methodology
 - ✓ No capacity wastage
 - ☑ Flexibility
 - ☑ Currently feasible?
 - Developing methodology
 - Process control
 - Utilisation of capacity?
 - Shelf life?

Targeting – PCR based

- Roche FLX
 - ~4000 PCRs (400,000 amplicons / 100 required depth)
 - ~40 x 96 well plates
- Illumina Genome analyser / AB SOLiD
 - ~48000 PCRs (~600 samples x 80 fragments)
 - ~480 plates
- All PCRs require:
 - Purification
 - Quantitation and normalisation
 - Mixing

Targeting - Alternatives

- Array based
 - Using standard arrays (Nimblegen)
- Liquid phase (probe based)
 - Circularisation
 - RNA probes (Agilent)
 - Fully flexible targeting

Analysing Multiple Samples

Physical separation

Analysing Multiple Samples

ID tagging

Cost benefits

Screening 120 amplicons 250-300bp (30Kb) Required coverage 50x per allele (Approximately equivalent to BRCA screen)

Roche GS-FLX - 1x108 bp/run

- 33 samples /run
- ~£60 / sample (run cost)

Illumina Genome Analyser

- 600 samples / run
- ~£15 / sample (run cost)

Utilisation of capacity

- NHS centralised technical facility
- Farm technical work out to commercial lab
- Small inter-laboratory collaborations
- Local research and inter-disciplinary collaborations
- Go for lower capacity technology
- Increase work portfolio

Summary

- Analysing multiple patient samples in parallel
 - Physical separation
 - ID tagging
 - Pooling strategies
- Targeting specific regions of interest
 - PCR
 - Arrays
 - Probe based circularisation
- Rationalising amplification process
 - High level multiplexing
 - Capturing specific fragments
- Data handling Capacity and skills

Conclusions

 New generation sequencing technologies promise capacities and TP several orders of magnitude greater than current capabilities

But..

- These are new technologies and there are significant issues to be resolved
- Even current capacities will be difficult to use for current diagnostic applications
- Technology is evolving rapidly
 - Consideration of longer term requirements
 - Development of platform independent sample prep

The future

- Single molecule sequencing
 - Eliminates phasing problems
 - More quantitative
 - Not without issues
- Very long reads (10,000s bases)
 - Reduces analysis problems (assembly)
 - Resolution of repeats
 - Simplified structural analysis
- Real time detection at incorporation
 - Very fast