

The Manchester FastScan Sequencing Pipeline

Stuart Bayliss FastScan, NGRL (Manchester)

New and Developing Technologies for Genetic Diagnostics NGRL (Wessex) 17-18 July 2006

FastScan

- Dedicated 'high-throughput' section
- Initial focus: bi-directional mutation scanning
- Automation
 - 2 x Biomek NX Span8 (pre-PCR)
 - 1 x Biomek NX MC (post PCR)
 - 1 x 3730
- 1xMTO (lab), 1xCS, 2xMTOs (data analysis/lab),
 1xProject Manager

ID	Task Name	Start	Finish	Q1 05 Feb Mari	Q2 05 Apr May Jun	Q3 05 Jul Aug Sep	Q4 05 Oct Nov Ded	Q1 06 Jan Feb Mar	Q2 06 Apr May Juri	Q3 06 Jul Aug Sep	Q4 06 Oct Nov Deci	Q1 07l Jani Feb
1	Project Manager	17/01/2005	16/03/2007									
2	мто	01/02/2005	28/02/2006									
3	мто	04/04/2005	30/12/2005)				
4	Data Analysts MTOs	24/06/2005	16/03/2007		(
5	Clinical Scientist	01/09/2005	16/03/2007									
6	МТО	16/01/2006	16/03/2007									

NHS

Initial Aims

- Enable high-throughput bi-directional mutation scanning by DNA sequencing
- Initial task: address BRCA backlog
 - Develop an 'automated' service using existing Meta PCR chemistry
 - Run backlog samples during development of service (no continuation of existing service provision)
 - Increase throughput six-fold
 - Reduce turnaround time eight-fold
 - Complete within 18 months
- June 2006 deadline to clear March 2005 backlog (333 scans)
- Staff new to BRCA and new to automation

FastScan Process (Meta-PCR)

FastScan

- BRCA1 & BRCA2 screened serially
- Initial set-up: 6 samples, 2 controls (cell line & no DNA)
- Changed to 14 samples, 2 controls
- Added random known positive samples to check analysis
- April '05 September '05
 - Tested & optimised robotics for automated set up of PCRs & sequencing reactions
 - Simultaneous service provision & development work on 'live' samples
 - Began receiving Merseyside/Cheshire backlog samples June '05
- Issues:
 - Sample & Reagent quality
 - Instrument failures (Robotics, PCR)
 - Chemistry optimisation
 - Information tracking not covered by lab db

FastScan

- October '05 Current
 - Optimised chemistry for BRCA1 & 2
 - Reduced repeat numbers
 - Delayed introduction of automation until Jan '06
 - Altered data analysis process
 - Further established systems for tracking information to suit our requirements
 - Completed previous 192 screens, began work on 182 new screens, now 90% complete
 - June '06 shifted focus to 40wd TAT
 - Now run 3 batches per month (42 screens)

Data Analysis

- Very stringent data analysis MTO 1st check, CS 2nd check, full bi-directional analysis in Staden
- April '05 June '05
 - Primary analysis by lab or dedicated MTOs
 - All data second checked in Staden & reported by 3xCS
 - ~2hrs per screen for 2nd checking
- July '05 current
 - Introduced two dedicated MTO 1st checkers
 - Data QC and primary analysis in Staden & Mutation Surveyor & track all sample related info
- Feb '06: began distributing 2nd checking to all Clinical Scientists in lab
 - Major changes to lab database
 - Required minimal training (Staden)
 - Spread marking workload across lab
 - Reporting centralised

Report Output

TAT Improvement

Reporting Summary

	Total reports	Mutations Found (inc. MLPA)	UVs	Mutation Rate	Variation Rate (M+UV)	
BRCA1	114	7	8	6.1%	13.2%	
BRCA2	162	16	24	9.9%	24.7%	
All	276	23	32	8.3%	19.9%	

Year	BRCA1	BRCA2	Total
Jan-Dec '05 Total	25	16	41
Jan-current '06 Total	89	146	235
Grand Total	114	162	276

Variation Types (n=55)

BRCA Variant Spectrum BRCA1 n=114, BRCA2 n=162

FastScan Summary

- ✓ Produced 266 scans (80% of target) by June '06 deadline
- ✓ Most change has occurred in laboratory processes, not in laboratory automation; re-organisation has been key
- ✓ Repeats were a problem, now manageable
- ✓ Distributed data analysis has been a success, but...
 - * Additional burden on some staff
 - Needs careful management
- √ 40wd turn around time is achievable with this procedure
- Meta PCR method is still manual
 - ✗ Gel cut outs still in operation
 - Sequencing fragments too large for automated clean-up
 - Requires experience to operate well
- Sample quality problems
- Development time in production environment

40wd BRCA Gene Screen Gantt

Future Work

BRCA

- Aim: 100% automation of laboratory work (non meta PCR); maximise efficiency of process (work in progress)
- Refine data analysis procedures
 - Investigate sole use of Mutation Surveyor
 - Need to closely define expected timeframes in distributed system
- Develop in-house db of UV/poly information to reduce confirmation numbers

Overall

- Construct and develop model for simultaneously screening multiple disease genes with variable sample numbers
- Aim: the sample is the batch
- Global design & optimisation strategy
 - SOPs should work 'out of the box' for all users
 - ? Batch testing of reagents, how to use controls
- Continual assessment of strategy & resources
- Use of 'best practise' and lessons from other laboratories
- Introduction of STARLIMS

Acknowledgements

- Rob Elles
- Andrew Wallace
- Emma Howard
- Claudia Largan
- Chris Charlton
- Megan Adaway
- Laura Dutton
- Emma Brownsell
- Yogen Patel

Autumn Workshop

Identifying Issues For Best Practise In High-Throughput Systems

NGRL(M)