

RNA Analysis

Helen White, NGRL (Wessex)

Outline of talk

Case report

Interpretation

Stability of alleles

Overlapping RT-PCR for BRCA1, BRCA2, MSH2 & MLH1

cDNA samples from peripheral blood are amplified and products digested to detect abnormal splice variants

Cases analysed to date

NHS	
NGRL WESSEX	

Gene Exon		Mutation	Protein
BRCA1 3		c.122 A>G	p.His41Arg
BRCA2	18	c.7988A>T	p.Glu2663Val
BRCA1 15		c.4644G>A	p.Thr1548Thr
BRCA1 17		c.4999 A>G	p.Lys1667Glu
BRCA2	Intron 2	c.68-7T>A	N/A
BRCA2	RCA2 15 c.7565C>T		p.Ser2522Phe
BRCA2 11		c.3698C>T	p.Ala1233Val
BRCA2	BRCA2 23 c.9098C>T		p.Thr3033lle
BRCA2	20	8567A>C	p.Glu2856Ala
BRCA1+2	N/A	Very strong family history	N/A
BRCA1	BRCA1 7 441+39T>C, 441+41T>C,?551+44 t>C		Intronic
BRCA1	11	c.855 T>G	p.Leu246Val
BRCA1	10	671-2A>G	Intronic
BRCA1+2	N/A	Very strong family history	N/A
MSH2	11	c.1667T>G	p.Leu556Trp
MSH2	8	c.1355A>T	p.Glu452Val
hMSH2	5	G>A@817 & T>A@818	
hMLH1	16		p.Lys618Ala
hMLH1	2	G>A@199	p.Gly67Arg
hMLH1	10	C>T793	

Case report

Patient JT

- 55 year old male
- Referred from Cardiff for mutation testing for HNPCC

DNA Analysis

• dHPLC screening of hMLH1 and hMSH2

dHPLC and Sequencing

hMSH2 exon 8 missense mutation c.1355A>T, p.Glu452Val

unknown significance

http://www.fruitfly.org/seq_tools/splice.html

NORMAL

Donor site predictions
Start End Score Exon Intron
172 186 0.99 ggatcag Otatgcaa

MUTANT

Donor site predictions								
Start	End	Score	Exon	Intron				
139	153	0.95	gtttcag	taatgat				
172	186	0.99	ggatcag	tatgcaa				

Cryptic splice donor site may be activated by this mutation

RNA Analysis

- Fresh EDTA blood sample received
- RNA extracted
- RT-PCR of Exon 7-10

Cloning and sequencing

- The whole PCR product was cloned
- Sequencing of ~30 clones carried out
- c.50% clones had a 33bp in-frame deletion of the last 11 amino acids of exon 8, p.Glu452_Gln462del
- Cryptic donor splice site is being used
- c.50% clones showed normal splicing, none of these had mutation

Species conservation and protein structure

11 deleted amino acids highly conserved across species

```
NP 000242.1 [Homo
                                  SKFQEMIETTLDMDQV
XP_538482.2 | [Canis
                                  SKFOEMIETTLDMDOV
NP_001029756.1 | [Bos
                                  SKFOEMIETTLDMDOV
NP_032654.1 | [Mus
                                  SKFOEMIETTLDMDOV
NP_112320.1 | [Rattus
                                  SKFOEKIETTLDMDOV
XP_001382178.1 | [Monodelphis
                                  SKFOEMIETTLDMNOV
XP_426110.2|[Gallus
                                  SKFLEMIETTLDMDKV
S53609 | [African
                                  SKFOEMIETTLDMDOV
NP_998689.1 | [Danio
                                  SKFOEMIETTLDMNOV
```

- Predicted to be within a MutS DNA binding domain, vital for function of the hMSH2 protein as a mismatch repair protein, therefore predicted to be pathogenic
- ICH showed loss of hMSH2 expression in JT's tumours

Conclusions

- c.1355A>T is highly likely to be pathogenic
- Mutation activates a cryptic donor site in exon 8 of hMSH2 leading to a 33bp in frame deletion within a conserved functional domain
- This mutation is likely to account for the loss of expression of hMSH2 seen by ICH (Cardiff)
- DNA/ RNA from other family members would be useful for co-segregation studies

Interpretation problems: Example 1

hMLH1 Exons 1-10 & Exons 11-16:

Patient 1 (hMLH1 Exon 16 mutation)

Identical sized transcripts as controls for both PCRs

Patient 2 (hMLH1 Exon 2 mutation c.199 G>A)

Same sized transcripts as normal control (C) but different levels of expression for Exons 1 - 10.

But, patient 2 shows 2 differently sized transcripts in the Exon 11-16 PCR even though the mutation is in exon 2. How should you interpret this?

Interpretation problems: Example 2

hMLH1 Exons 6-12

Control samples C1 and C2

Same sized alternative transcripts but each is apparently expressed at different levels in each control

Patient (P) (hMLH1 Ex10 mutation c.793 C>T)

Same sized transcripts as controls but again the levels of expression of each transcript appear to be different – is this significant, normal population variation or an artefact relating to RNA quality?

Quantification of Allelic Expression (NMD) by Pyrosequencing

DNA sample

Ratio of C:T is 1:1

cDNA sample

2.3 fold imbalance

Analysis of normal controls (n=38)

Effect of transit time

Acknowledgements

Wessex Regional Genetics
 Esta Cross

National Genetics Reference Laboratory (Wessex)
 Vicky Hall

Cardiff
 Ian Frayling