

Potential applications of high resolution melt curve analysis for genetic diagnostics

Helen White, PhD

National Genetics Reference Lab (Wessex)
Salisbury

UK

UK National Genetics Reference Laboratories

- Established in 2002 by the Department of Health (UK)
- Two laboratories based in Manchester and Salisbury (Wessex)

- Aim to evaluate technologies and systems that are close to service and assess their applicability to genetic testing within the National Health Service
- Other functions of the laboratories include:
 - Horizon Scanning and Technology Assessment
 - Developing new Quality Assessment Systems
 - Developing reference and control reagents

Outline of talk

- What is High Resolution Melt curve analysis (HRM)?
- Potential applications in genetic diagnostics
 - Mutation scanning
 - ➤ Methylation analysis
 - > Detection of somatic mutations

What is High Resolution Melt Curve analysis?

- Simple, cost effective post PCR technique for high throughput mutation scanning, genotyping and methylation profiling
- Uses standard PCR reagents and double stranded DNA binding dyes
- Closed tube method:
 - no post PCR handling and no separation step
- Historically HRM limited due to technical constraints
 - data acquisition
 - sensitivity of instrumentation
 - inadequacies of fluorescent chemistry
- Promising method of mutation scanning with sensitivity comparable current techniques

High Resolution Melt Curve Analysis

High Resolution Melt Curve Analysis

Mutation Scanning

Mutation Scanning

Detecting 'unknown' sequence variation at any position within an amplicon:

e.g. single base substitutions (point mutations)

deletions

insertions

- In the UK the results of mutation scanning of large genes are now required to be reported within 6-8 weeks of sample receipt
- Over half of all genetic test performed in the UK involve mutation scanning for 'private' mutations e.g. hereditary breast cancer and colorectal cancer, Marfans etc
- Use of a 'pre-screening technique' compared to direct sequencing has the potential to greatly reduce costs of these genetic tests and improve reporting times

Evaluation protocol January – March 2006

11 different amplicons analysed (7 plasmid based, 4 genomic DNA)

• Size range 139bp – 449bp

• GC content 22% - 79%

• Types of mutation All possible heteroduplex types

ins C, ins AA

del A, del C, del CA

- Amplicons amplified using RotorGene 6000 and monitored using real time PCR
- Identical amplicons analysed using HRM on three machine platforms:

• HR-1 (Idaho Technology)

• 384 well LightScanner (Idaho Technology)

• RotorGene 6000 (Corbett Research)

Evaluation results (March 2006)

Tested total of 624 samples (including controls) in eleven amplicons

Analysed: 212 mutated samples (105 unique mutations)

393 wild type samples

	Sensitivity	Specificity
RotorGene 6000	100.0	95.3
HR-1	98.4	95.0
LightScanner 384 well (High)	99.0	88.0

HRM evaluation currently being undertaken by EuroGentest:

http://www.eurogentest.org/

Factors affecting sensitivity and specificity

Length of amplicon: Shorter is better

Position in amplicon – no obvious effect

hMSH2 Exon 10 (249bp, 34% GC Rich)

Local sequence context / type of mutation

Methylation Profiling

Prader Willi and Angelman Syndromes

- Two clinically distinct neurodevelopmental disorders (1 : 15 20,000)
- Caused by deficiency of specific parental contributions at an imprinted domain at 15q11.2-13

PWS Caused by loss of the paternal (unmethylated) contribution

- Paternal deletion (~70%)
- Maternal UPD (~30% cases)
- Mutation in the imprinting region causing abnormal methylation (<2%)

Phenotype: infantile hypotonia

mild to moderate mental retardation

hypogonadism

hyperphagia with obesity

short stature and obsessive-compulsive behaviour

AS Caused by loss maternal (methylated) contribution

- Maternal deletion (~70%)
- Paternal UPD (~5% cases)
- Mutation in the imprinting region causing abnormal methylation (~5%)

Phenotype: developmental delay, functionally severe

speech impairment, none or minimal use of words;

movement or balance disorder.

behavioral uniqueness: frequent laughter/smiling; apparent happy demeanor;

easily excitable personality, often with hand flapping movements

Bisulphite Treatment

 Bisulphite treatment causes ummethylated Cytosines to convert to Uracil while methylated cytosines remain unchanged.

NORMAL

AGGGAGTTGGGATTTTTGTATTG<mark>YG</mark>GTAAATAAGTA<mark>YG</mark>TTTG<mark>YGYG</mark>GTYGTAGAGGTAGGTTGG<mark>YGYG</mark>TATG TTTAGG<mark>YG</mark>GGGATGTGTG<mark>YG</mark>AAGTTTGT<mark>YG</mark>TTGTTGTAG<mark>YG</mark>AGTTTGG<mark>YG</mark>TAGAGTGGAG<mark>YG</mark>GTYGTYGGAG ATGTTTGA<mark>YG</mark>TATTTGTTTGAGGAG<mark>YG</mark>GTTAGTGA<mark>YGYG</mark>ATGGAG<mark>YG</mark>GGTAAGGTTAGTTGTGT<mark>YG</mark>GTG<mark>GTT</mark> TTTTTTAAGAGATAGTTTGGGG

PWS

AGGGAGTTGGGATTTTTGTATTG<mark>CC</mark>GTAAATAAGTA<mark>CC</mark>TTTG<mark>CGCC</mark>GTCGTAGAGGTAGGTTGG<mark>CGCG</mark>TATG TTTAGG<mark>CG</mark>GGGATGTGTG<mark>CG</mark>AAGTTTGT<mark>CG</mark>TTGTTGTAG<mark>CG</mark>AGTTTGG<mark>CG</mark>TAGAGTGGAG<mark>CG</mark>GT<mark>CG</mark>GTC<mark>G</mark>GAG ATGTTTGA<mark>CG</mark>TATTTGTTTGAGGAG<mark>CG</mark>GTTAGTGA<mark>CGCG</mark>ATGGAG<mark>CG</mark>GGTAAGGTTAGTTGTGT<mark>CG</mark>GTG<mark>GTT</mark> TTTTTTAAGAGATAGTTTGGGG

AS

AGGGAGTTGGGATTTTTGTATTGTGTGGTAAATAAGTA<mark>TG</mark>TTTG<mark>TGTG</mark>GTTGTAGAGGTAGGTTGG<mark>TGTG</mark>TATG TTTAGG<mark>TG</mark>GGGATGTGTG<mark>TG</mark>AAGTTTGT<mark>TG</mark>TTGTTGTAGTGAGTTTGGTGTAGAGTGGAG<mark>TG</mark>GTT<mark>G</mark>GAG ATGTTTGA<mark>TG</mark>TATTTGTTTGAGGAG<mark>TG</mark>GTTAGTGA<mark>TGTG</mark>ATGGAG<mark>TG</mark>GGTAAGGTTAGTTGTGT<mark>TG</mark>GTG<mark>GTT</mark> TTTTTTAAGAGATAGTTTGGGG

Promoter region of SNRPN: 21 CpG sites can vary

HRM for diagnosis of PWS / AS

dsDNA binding dyes

Analysed 166 bisulphite treated DNA samples:

39 PWS, 31 AS, 96 Normal Controls

Dye	Correctly classified with automated calling at > 80% confidence*
LCGreen Plus	95 %
EvaGreen	98 %
Syto9	95 %

- Data from automated calling concordant with MS-PCR assay.
- Remaining 2 5% could be correctly classified by eye.

Detection of mosaicism

Detection of Acquired Mutations

Detection of acquired / somatic mutations

- Human myeloproliferative disorders form a range of clonal haematological diseases
- The molecular pathogenesis of these disorders is unknown, but tyrosine kinases have been implicated in several related disorders
- Recently a high proportion of patients with myeloproliferative disorders have been found to carry a dominant gain-of-function mutation of JAK2
- JAK2 V617F is a somatic mutation present in hematopoietic cells
- Detection of this acquired mutation is likely to have a major impact on the way patients with MPD are diagnosed

Detection of acquired JAK2 V617F mutation

Summary

- HRM is a simple and cost effective post-PCR technique which can be used for high throughput mutation scanning (constitutional and some acquired), methylation profiling and genotyping
- Requires the use of only PCR reagents and dsDNA binding dyes e.g. LCGreen® Plus, EvaGreen, Syto9
- Requires no post-PCR handling and no separation step.
- HRM has a mutation detection sensitivity and specificity which is comparable to currently available pre-screening techniques although PCR optimisation is essential
- Capable of detecting some homozygous mutations
- Has potential to be used to screen polymorphic exons
- HRM had the potential to be integrated into clinical diagnostic pre-screening strategies to facilitate large genes to be screened and reported within the 6-8 weeks recommended in the UK Genetics White Paper

Acknowledgements

Gemma Watkins

Vicky Hall

Sebastian Kreil

Amy Jones

Lawrence Murphy

Greg Nowak

David Harris

Jason McKinney

Further information

corbettlifescience.com

idahotech.com

eurogentest.org

ngrl.org.uk/Wessex