Technical challenges in noninvasive prenatal diagnosis

Cathy Meaney, Bhaneeta Lad, Gail Norbury.

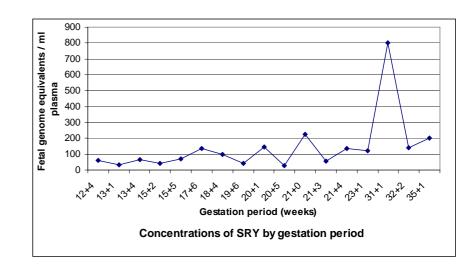
NE Thames Regional Genetics Service

Plan

- Background
- Current applications
- Challenges
- Experience
- Future

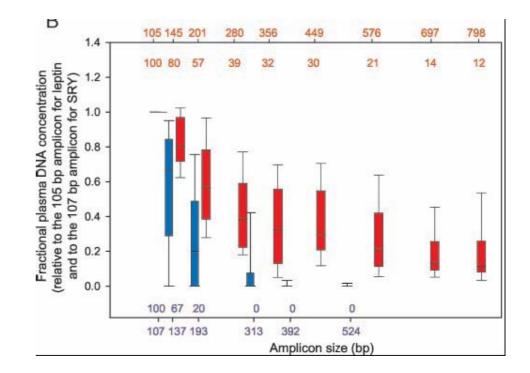
Non Invasive Prenatal Diagnosis

Goals of PND

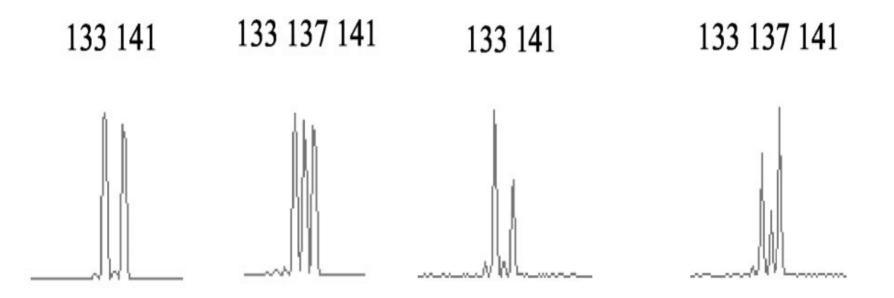

Fetal Cells (1989)

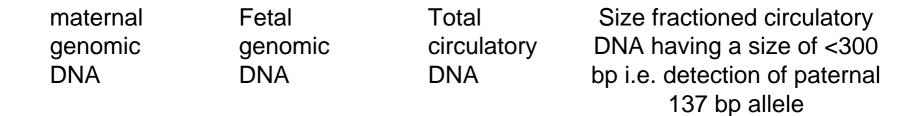
Rare Isolation Longevity

Cell Free DNA (1997)


Maternal haematopoietic cells Fetal syncytiotrophoblasts

Gestation Period	Early	Late
Genome Equivalents (GE.) / ml maternal plasma	25.4	292.2
% fetal DNA of total DNA in maternal plasma	3.4%	6.2%




Cell free DNA

- Pregnancies with complications, EP
- Multiple pregnancies
- Clearance
- Mixture
 - Competition
 - Background
- Size

Chan et al, 2004

Capillary electropherograms of D21S11 alleles (Li et al.2004)

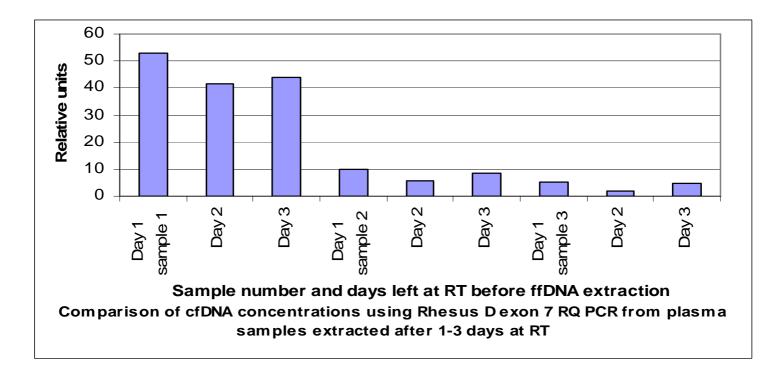
Applications

- Blood typing
 - Antenatal RhD-ve screening
- Fetal sexing
 - X-linked disease (DMD, ALD, XSCID, Hunter, OTC..)
 - CAH, AIS
- De novo
 - Ach
- Paternal transmitted disorders
 - DM (?size of material if expanded)
- Recessive where high % compound heterozygotes
 - CF, β -thalassaemia
- (Aneuploidies)

Challenges

• Sensitivity

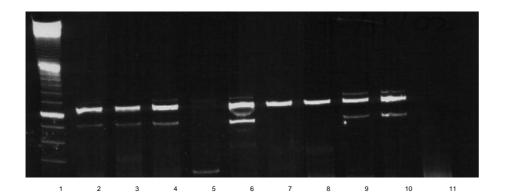
early detection when fetal DNA at low levels (2gE/PCR) suitable standards (plasmids, perfused placenta)


• Specificity

Low amount of fetal DNA (1-12%) in high background of maternal DNA

- Universal fetal-specific markers to confirm presence of fetal DNA
- Validation Dynamic range (1-560 gE/ml fetal, 70->4000 gE/ml total)
- Technology / Platforms
 Real time PCR, SABER MALDI-TOF MS

Extraction parameters


- Separation (time, speed of separation, brake)
- +/-formaldehyde
- Serum or plasma
- Methods (Qiagen midi, mini, DRI-CST, MinElute)
- Volumes
- Automation time, cost, yield
- Stability
- Storage

Sample storage

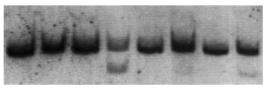
Extracts were successfully prepared up to 3 days after collection and following several months storage of plasma at –20°C. However, it appears best to separate the plasma and analyse the extract within 24 hours.

Standard PCR

112 bp AMELB (Y) 106 bp AMELB (X) 93 bp SRY

Results

Of the total of 33 gels that were run, 10 (30.3%) were useable, 19 (57.6%) had male contamination, and 4 (12.1%) were too faint to interpret.

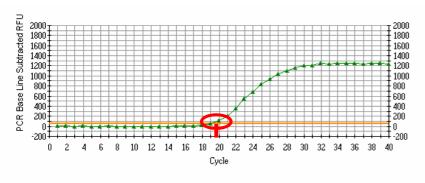

These 10 gels represented 80 runs for 56 samples (27 female and 29 male fetuses).

The useable results were then divided into those for the AMELB and SRY probes, to test the accuracy and efficiency of the test with these two probes.

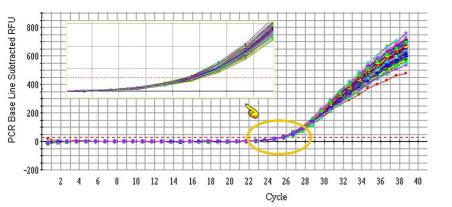
	Sensitivity	Specificity	PPV	
Amel B	29/38	22/27	29/34	
	76.3%	81.5%	85.3%	
SRY	39/43	19/30	39/50	
	90.7%	63.3%	78.0%	

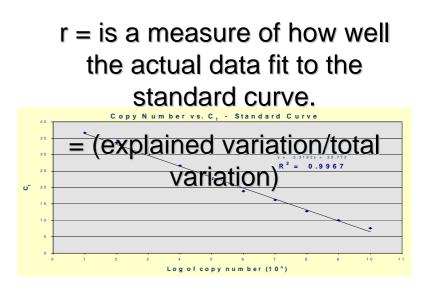
Other attempts

- Cystic Fibrosis (p.Asn1303Lys) \rightarrow ARCS
- Apert (p.Pro253Arg) \rightarrow RED
- Thanatophoric dysplasia (p.Arg248Cys) → fluorescent primer & ARMs
- Literature
 - Nested PCR (SRY, DM1, AmelXY)
 - Touch down PCR. 9mls plasma, 34/40 cut out (Ach)


Ach. Hahn et al 2004

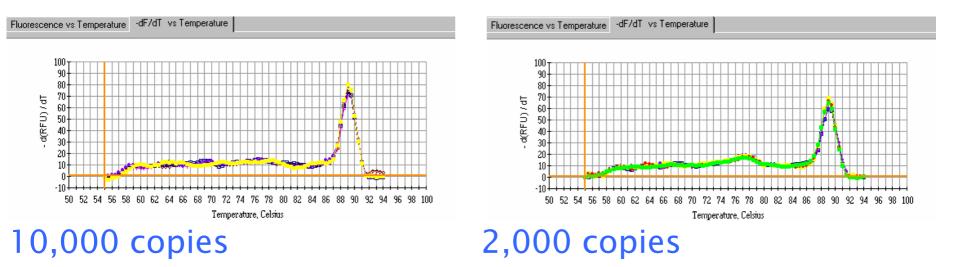
Real-Time PCR

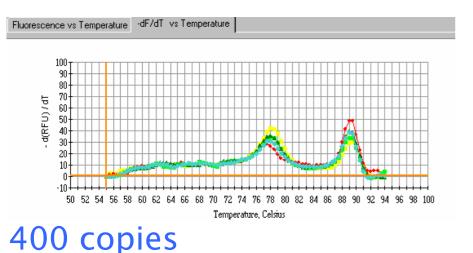

- Closed system contamination
- Probes specificity, multiplex, sensitivity
- Melt curve analysis products, efficiency
- Automation
- Optimisation
- Cost reagents
- Multiplex

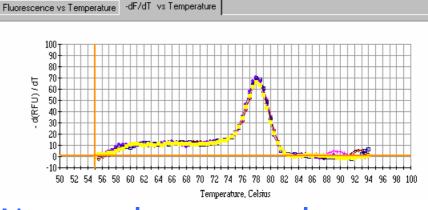

Threshold Cycle, C_T

The point at which the fluorescence rises appreciably above background

PCR Amplification vs Cycle: C:\My Documents\customer's opds\jkb1-26-01b.opd






The slope of the standard curve can be directly correlated to the efficiency of the reactions:

Efficiency (η) = [10^(-1/slope)] - 1

Identify primer-dimers by melt curve to determine dynamic range

No template control

Multiplexing - Didn't work

Approach

Design assays for real-time PCR – primer and dual labelled probe

Check for secondary structure in product

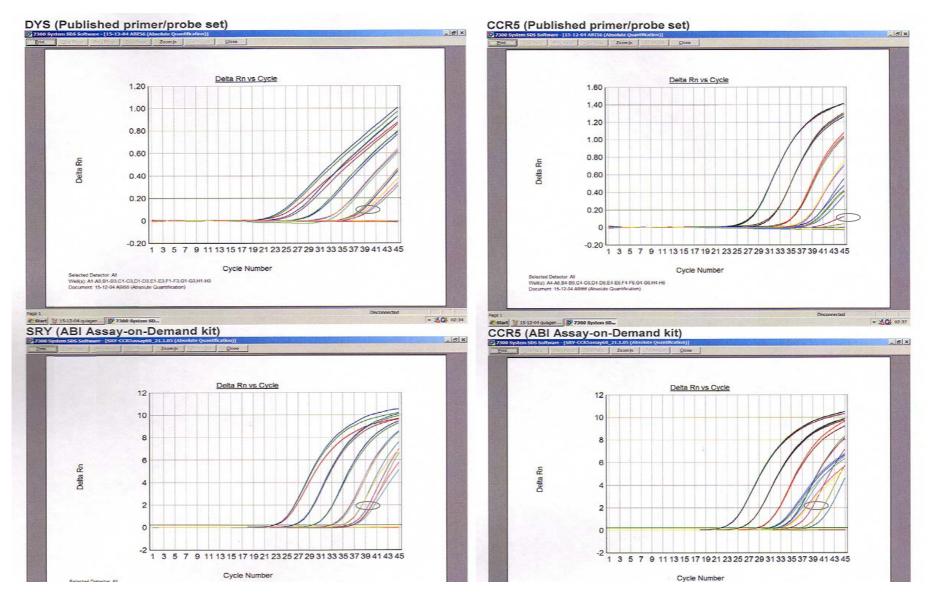
Keep standard annealing temp

Set up individual assays and standard curves, 1st with Sybr Green then dual labelled probes using male DNA diluted in female to appropriate concentration range (0.01ng)

Combine as multiplex

Maximize Efficiency, Equalize Efficiency, Eliminate Cross-Reactivity

Problems


Increased cycles Increase annealing time, try 3 step instead 2 step Change Mg Change reaction volume 25 to 50µl Check multiplex with Sybr Green

Interaction between primers & probes when multiplexed reduced sensitivity

Fetal sex determination using real time PCR-Taqman assays

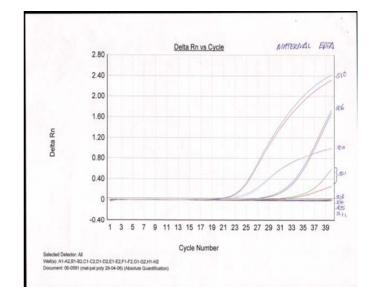
Platform	Y specific primers/probe	Control primers/probe	Source
iCycler	AMEL Y (FAM)	AMEL X	In-house
	& SRY (HEX)	(ROX)	design
iCycler	DYS14	CCR5	Published
	(FAM)	(FAM)	sequences
AB 7300	SRY	CCR5	AB Assay-on-
	(FAM)	(FAM)	Demand Kits

AB 7300: Comparison of DYS/CCR5 assays & AB SRY/CCR5 Assay-on-Demand Taqman-MGB kits

Result validation

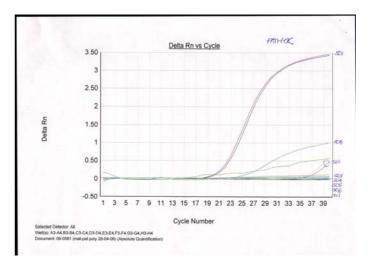
- Positive result (PCR product with SRY)
 4/5 replicates with Ct < 40 cycles
- Negative result (no PCR amp with SRY) all replicates with Ct > 40 cycles
- Negative controls

no H20 control wells with Ct value < 40


• Positive controls

all male replicates Ct < 40

- Slope of standard curves between -3.3 and -4.5
- Repeat if discrepancies

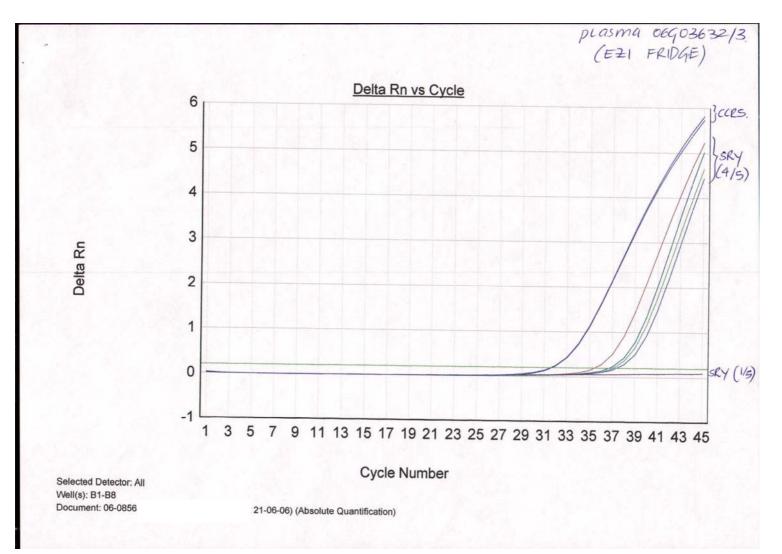

Polymorphisms

- Test mother (& father) for 8 bi allelic makers
- Re-test mother and cfDNA for informative markers

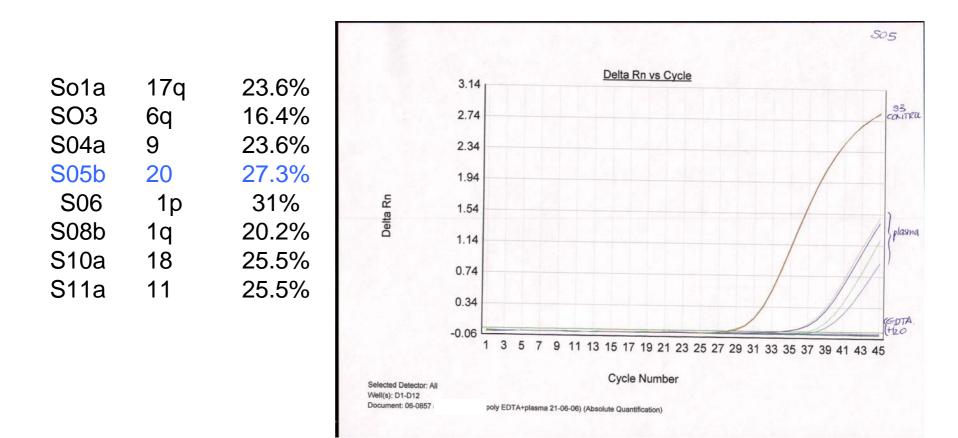
Maternal marker informative (-ve) S03,4,5,11

 If no SRY in cfDNA but positive non-maternal marker assume evidence of ffDNA in cfDNA

Paternal marker informative (+ve) S01 (8, 10)

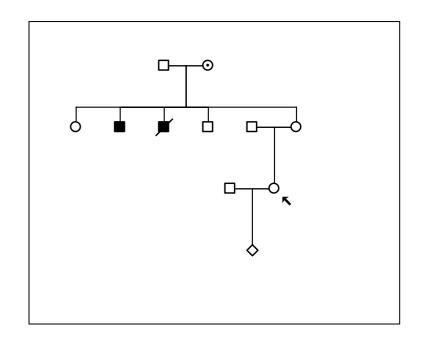

SAFE Workshop 2: Showing the quality of performance of noninvasive prenatal genotyping in Europe

- 0.6 ml plasma (16/40) sent out at RT
- 18 partners received 5-6 samples
- Tested for RhD & SRY

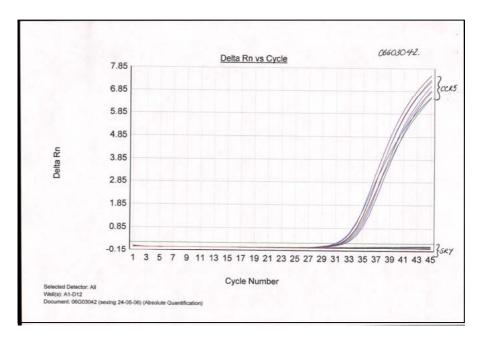

Results on 105 RhD and 109 SRY

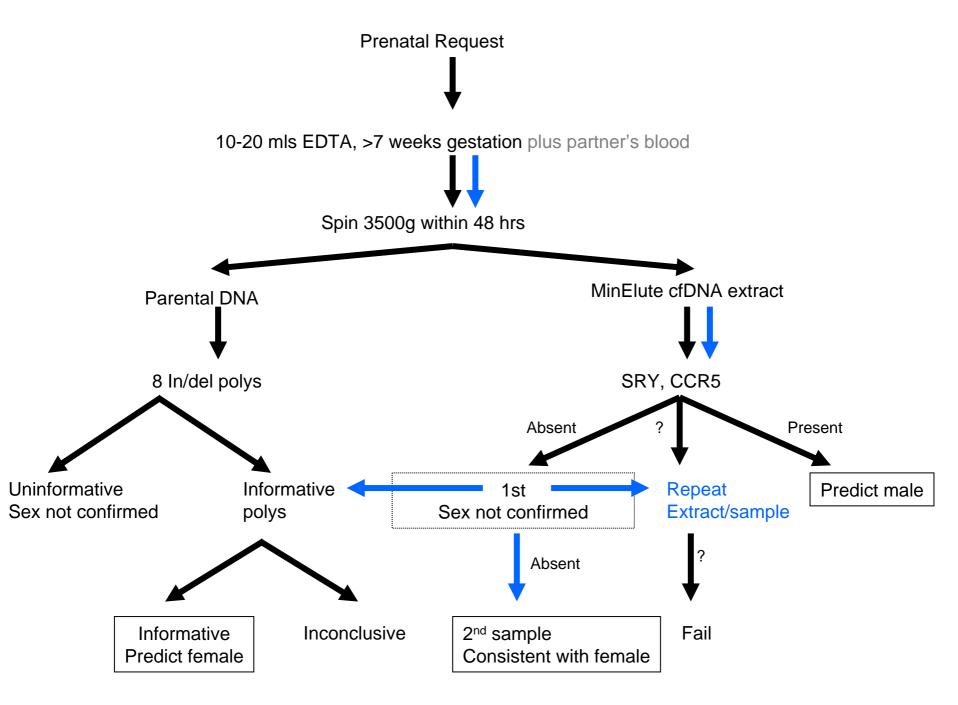
- Correct results: 193 (90.2%)
- False results: 10 (4.7%)
 6 false positive and 4 false negative
- Inconclusive results: 11 (5.1%)
 8 in positive samples and 3 in negative samples

Case 1. Male cfDNA – PND for ALD



Case 2. Marker provides evidence of ffDNA


Case 3. Duchenne muscular dystrophy


- Mutation not known
- Consultand would like PND
- Affecteds deceased
- Gm won't give sample
- Options

- 13/40 cfDNA SRY not detected
- 4 markers not informative
- Repeat at 14/40 SRY not detected
- U/Scan shows female
- On-going

C C	SRY FAM CCR5 FAM		TAMRA TAMRA		0.200000 0.200000		3 3		15 15	
Well	Sample Name	Detector	Task	a	SidDev Ct	Qty	Mean Qty	StdDev Qty	Filtered	Tm
AI	06G03042	SRY	Unknown	Undet.						
A2	06G03042	SRY	Unknown	Undet.						
A3	06603042	SRY	Unknown	Undet.						
A4	06G03042	SRY	Unknown	Undet.						
AS	06G03042	SRY	Unknown	Undet.						
A7	06G03042	CCR5	Unknown	31.58	0.129	180.62	171.18	13.344		
A8	06G03042	CCR5	Unknown	31.77	0.129	161.74	171.18	13.344		
BI	06G03042/2	SRY	Unknown	Undet						
B2	06G03042/2	SRY	Unknown	Undet.						
B3	06G03042/2	SRY	Unknown	Undet.						
B4	06G03042/2	SRY	Unknown	Undet.						
B5	06G03042/2	SRY	Unknown	Undet.						
87	06G03042/2	CCR5	Unknown	31.01	0.095	255.75	245.82	14.051		
B8	06G03042/2	CCR5	Unknown	31.14	0.095	235.88	245.82	14.051		
CI	06G03042/3	SRY	Unknown	Undet.						
C2	06G03042/3	SRY	Unknown	Undet.						
C3	06G03042/3	SRY	Unknown	Undet.						
C4 C5	06G03042/3	SRY	Unknown	Undet.						
C7	06G03042/3	SRY	Unknown	Undet						
C8	06G03042/3	CCR5	Unknown	32.10	0.480	132.16	165.75	47.512		
	06G03042/3	CCR5	Unknown	31.42	0.480	199.35	165.75	47.512		
DI D2	06G03042/4 06G03042/4	SRY	Unknown	Undet.						
D2 D3		SRY	Unknown	Undet.						
	06G03042/4	SRY	Unknown	Undet.						
D4 D5	06G03042/4 06G03042/4	SRY	Unknown	Undet.						
D3	06G03042/4	CCR5	Unknown	Undet.						
D8	05G03042/4	CCR5	Unknown	32.26	0.259	119.87	134.72	21.005		
El	SRY H20 BLAN		Unknown	31,90	0.259	149.58	134.72	21,005		
E2	SRY H20 BLAN		NTC	Undet.						
E3				Undet.						
E7	SRY H20 BLANKSRY CCR5 H20 BL CCR5		NTC	Undet.						
E8	CCR5 H2O BL		NTC	Undet.						
E9	CCR5 H2O BL		NTC	Undet.						
59	CCR5 H20 BL.	CCR5	NTC	Undet.						

Summary of challenges

- Robustness (multiplex)
- Fetal Markers
- Future
 - Enrichment of <350 bp cfDNA (microfluidics)
 - Quantitation (management of delivery)
 - Panel of disease-specific markers (cardiac, renal, skeletal)

Acknowledgements

Clinical

- Lyn Chitty, FMU,UCH Technical
- Kirsten Finning, IBGRL

Funding

• ICH Pump prime grant

• EU SAFE

NE THAMES REGIONAL MOLECULAR GENETICS SERVICE

Cell-Free Fetal DNA Sex Determination

Contact details Molecular Genetics Level 5 Camella Botnar Laboratorites Great Ormond Street London WC1N 3JH Tet: 020 7905 2223 Fax: 020 7813 8196 cmo@nosh.nbs.uk

Samples required

Pregnant Women 10-20mis venous blood in plastic EDTA bottles plus 10 mis from partner where possible.

Testing must be arranged in advance, through your

Local Clinical Genetics Dept Or Fetal Medicine Unit, EGA, UCH London 2073809872 or 08451555000 ext 5572 email Lohtfy@ich.ucl.ac.uk

A completed DNA request card should accompany all samples.

Introduction

Free fetal DNA may be detected in maternal plasma from early in gestation and used for determination of fetal gender. The sex of the fetus is determined by the presence of Y-specific sequence for a male fetus and the absence of Y specific material but presence of a fetal (non-maternal) genotype in the cell free DNA extract in the case of a female fetus. This technique is still relatively new to clinical practice and the results from a European Union quality assurance programme have reported the rare occurrence of a false positive result for a male fetus. In view of this we currently recommend that fetal sex is confirmed when ultrasound is performed at 20 weeks. Our local data for this assay shows a sensitivity, specificity and positive predictive value of 100% (n=00).

Service offered

We offer this service to pregnancies at risk of X-linked disorders or congenital adrenal hyperplasia. It is <u>not</u> available for non-medical indications. The results should be confirmed by ultrasound to avoid the very small risk of an erroneous result. This test may not be applicable in multiple pregnancies.

Male fetuses are detected by the presence of SRY-specific sequence. The presence of fetal DNA is detected using a panel of eight bi-allelic polymorphic markers (chromosome location); S01a (17q), S03 (6q). S04a (9), S08b (20), S06 (1p), S08b (1q), S10a (18), S11a (11). These markers are usually informative.

Referrals

All referrals should be made via a Clinical Genetics Department or through the Fetal Medicine Unit at UCLH (see left). Samples are accepted from patients at over 7 weeks gestation at which time there should be a sufficient concentration of free fetal DNA in the circulation. Samples may be sent by post to arrive in the laboratory within 24 hours of sampling if possible. The laboratory must be advised in advance because of the need to process the samples as rapidly as possible after collection. A paternal blood sample may aid in the interpretation of the polymorphic markers and should also be sent when possible.

Technical

10-20 mls maternal EDTA blood is separated as rapidly as possible after collection. Cell free DNA is extracted from the plasma and maternal DNA is extracted from the lymphocytes. Molecular analysis is performed using real time PCR and Taqman assays for the SRY marker and a CCR5 control marker. The detection of a male fetus can be reported at this stage. In the case of detection of total cell free DNA but absence of the SRY marker, indicative of a female fetus, further real time PCR analysis of the cfDNA and parental samples is performed with a panel of eight bi-allelic markers to discriminate between fetal and maternal DNA and reduce a false negative result. This second stage will take additional time to complete.

Target reporting time

The results of the Y-specific probe should be available within 4 days. Reporting time in females will be longer as the results form the bi-allelic markers may take a further week dependent on informativity.

Patient details

To facilitate accurate testing and reporting please provide patient demographic details (full name, date of birth, address and ethnic origin), details of any relevant family history and full contact details for the referring clinician