



# Evaluation of MassCleave<sup>TM</sup> Technology For Diagnostic Mutation Detection

Chris Mattocks



# MassCleave<sup>TM</sup> chemistry



**Ref:** A strategy for the rapid discovery of disease markers using the MassARRAY system. *Rodi CP, Darnhofer-Patel B, Stanssens P, Zabeau M, van den Boom D.* Biotechniques. 2002 Jun;Suppl:62-6, 68-9.

## MassCleave<sup>TM</sup> Evaluation

#### Existing PCR designs

■ 12 fragments x 15 samples each +  $H_2O$  control

#### Plate 1:

■ BRCA1 exon 11 - 6 fragments (B,C,G,J,K,L)

#### Plate 2:

- hMLH1 5 fragments (exons 2,4,12,13 & 16)
- MSH2 exon 15 only
- Sequenom provided primers
- Amplifications carried out in NGRL
- Analysis carried out by Sequenom

# **BRCA1** Results

| Mutation<br>type | Seq.<br>results | Mutations identified with MassCLEAVE<br>(SNP discovery software aided analysis) |        |              |          |        |                     |
|------------------|-----------------|---------------------------------------------------------------------------------|--------|--------------|----------|--------|---------------------|
|                  |                 | flagged                                                                         | missed | False<br>+ve | position | nature | Zygosity<br>hom/het |
| Insertion        | 5               | 4                                                                               | 1*     | 7            | 0        | 2      | 3                   |
| Deletion         | 32              | 26                                                                              | 6*     | 1            | 15       | 7      | 26                  |
| Het. point       | 34              | 34                                                                              | 0      | 0            | 20       | 34     | 34                  |
| Hom. point       | 60              | 60                                                                              | 0      | 0            | 45       | 60     | 60                  |
| Total            | 131             | 126                                                                             | 7*     | 8+1#         | 80       | 103    | 123                 |

\*retrospective inspection of spectra clearly displays the mutation identifying signals #one unclassified variant was called in a normal sample.

# hMLH1 & hMSH2 Results

| Mutation<br>type | Seq.<br>results | Mutations identified with MassCLEAVE (SNP discovery software aided analysis) |        |              |          |        |                     |
|------------------|-----------------|------------------------------------------------------------------------------|--------|--------------|----------|--------|---------------------|
|                  |                 | flagged                                                                      | missed | False<br>+ve | position | nature | Zygosity<br>hom/het |
| Insertion        | 5               | 4                                                                            | 0      | 0            | 4        | 4      | 5                   |
| Deletion         | 12              | 10                                                                           | 2*     | 0            | 1        | 1      | 8                   |
| Het. point       | 25+1#           | 25+1#                                                                        | 0      | 0            | 25+1#    | 25     | 25+1#               |
| Hom. point       | 4               | 4                                                                            | 0      | 0            | 4        | 4      | 3                   |
| Total            | 46+1#           | 44+1#                                                                        | 2*     | 0            | 34+1#    | 34     | 41+1#               |

\*retrospective inspection of spectra clearly displays the mutation identifying signals. #two base pair substitution, AA>GC

# Theoretical cleavage

| Rxn | mass | Relative<br>frequency<br>in normal | Relative<br>frequency<br>in mutant | Sequence         |
|-----|------|------------------------------------|------------------------------------|------------------|
| TR  | 4918 | 1                                  | 0.5                                | GAAAACGGAGCAAAT  |
| TR  | 5247 | 0                                  | 0.5                                | GAAAACAGGAGCAAAT |
| CR  | 1689 | 1                                  | 0.5                                | GGAGC            |
| CR  | 2018 | 0                                  | 0.5                                | AGGAGC           |

# Frameshifts not flagged

- <u>3819 del GTAAA base 154 to 158 fragment K 3/3 missed</u>
  - Only 1 additional signal (within normal analysis range)
  - V. Low potential score
  - Software not currently designed to detect 5 bp deletions

| Rxn | mass | Relative<br>frequency<br>in normal | Relative<br>frequency<br>in mutant | Sequence              |
|-----|------|------------------------------------|------------------------------------|-----------------------|
| TF  | 1658 | 1                                  | 0.5                                | AAAGT                 |
| CF  | 6747 | 1                                  | 0.5                                | TTGTTATTTGGTAAAGTAAAC |
| CF  | 5110 | 0                                  | 0.5                                | TTGTTATTTGGTAAAC      |
| CR  | 1566 | 2                                  | 1.5                                | TTTAC                 |

## 3819 del GTAAA C-froward



# Frameshifts not flagged

#### <u>4184 del TCAA base 231-234 fragment L – 2/9 missed</u>

- Close proximity of 2<sup>nd</sup> mutation
- Only T-forward gives unambiguous signals
- Both amplicons failed/poor quality in T-forward
- Trich fragment in C-reverse

| Rxn | mass  | Relative<br>frequency<br>in normal | Relative<br>frequency<br>in mutant | Sequence              |  |
|-----|-------|------------------------------------|------------------------------------|-----------------------|--|
| TF  | 5520  | 1                                  | 0.5                                | CAAGAAGAACAAAGCAT     |  |
| TF  | 5247  | 0                                  | 0.5                                | AAGAAGAACAAAGCAT      |  |
| CF  | 2990  | 1                                  | 0.5                                | AAGAAGAAC             |  |
| CF  | 5210  | 1                                  | 0.5                                | TTGGAAGAAAATAATC      |  |
| CF  | 6913* | 0                                  | 0.5                                | TTGGAAGAAAATAAGAAGAAC |  |
| CR  | 3761  | 1                                  | 0.5                                | TTGATTATTTC           |  |
| CR  | 2479  | 0                                  | 0.5                                | TTATTTC               |  |

#### **Frameshifts Misscalled**

 <u>2731 ins T base 294 fragment G – miss-called as 2731</u> <u>C>T hom</u>
Can only be discriminated by T-reverse and C-reverse
Presence second mutation
De-convoluted in retrospect

# 2731 ins T T-reverse



## **Frameshifts Misscalled**

<u>3450 del CAAG base 154 to 157 fragment J</u>

- Only T-forward informative
- Confounding noise (also seen in another sample)
- Indicator seen in retrospect

### 3450 del CAAG T-forward



# **Point mutations miss-located**

#### 14 hets (3 unique)

■ 11 in fragments with 3 mutations

2 in fragments with 2 mutations

■ 1 in fragment with 1 mutation

■ 15 Hom (1 mutation – 15/15 cases)

One of calls correct

# Summary

- Design non-optimal
- All point mutations flagged and called but position occasionally ambiguous
- 32/37 frameshifts flagged only 2 unique mutations missed
- 2 frameshifts misscalled would need confirmatory sequencing regardless

## Conclusions

- MassCleave<sup>TM</sup> provides:
  - Fast sample turn around
  - Very low false positive rate
  - Very promising comparative re-sequencing method for diagnostic screening
- But:
  - More stringent (objective) quality criteria plus extension of data analysis range needed

## **Further work**

Larger study Optimal design ■ Reference mutation controls Defined quality criteria Cost analysis Software development Mulitple alignments? ■ Frameshifts? Work in progress by Sequenom

# Acknowledgements



# SEQUENOM® Niels Storm Susan Muller

#### **Preliminary report** available at http://www.ngrl.co.uk/Wessex/maldi\_tof.htm



Preliminary Report

#### Evaluation of MassCLEAVE<sup>™</sup> for Diagnostic Screening.

Prepared by Chris Mattocks, National Genetics Reference Laboratory (Wessex) in collaboration with SEQUENOM

#### Introduction

A number of the UK molecular genetics laboratories carry out routine [diagnostic] screens for diseases associated with multiple or large genes. To screen a single patient would typically require between 30 and 100 separate tests. Currently such screens are largely restricted to cancer genes such as BRCA1, BRCA2, hMLH1 and MSH2, but this list is likely to grow. This type of testing requires a high throughput approach in order to achieve adequate patient turnaround time. This has become particularly pertinent since the publication of the recent white paper on genetics (DOH 2003: *Our Inheritance*,