Evaluation of the Invader® assay platform for molecular analysis of the Factor V (G1691A) and Factor II (G20210A) mutations.

David J. Bunyan, Oliver N. Wood, Helen E. White

National Genetics Reference Laboratory and Wessex Regional Genetics Laboratory.

Aim:

- To evaluate the Third WaveTM Invader® DNA assay for the detection of the FVL (G1691A) and Factor II (G20210A) mutations.
- Test 100 samples where the genotype is known for the FV and FII mutations as determined by the RFLP method.
- Compare and contrast the two methods for use in a diagnostic setting.

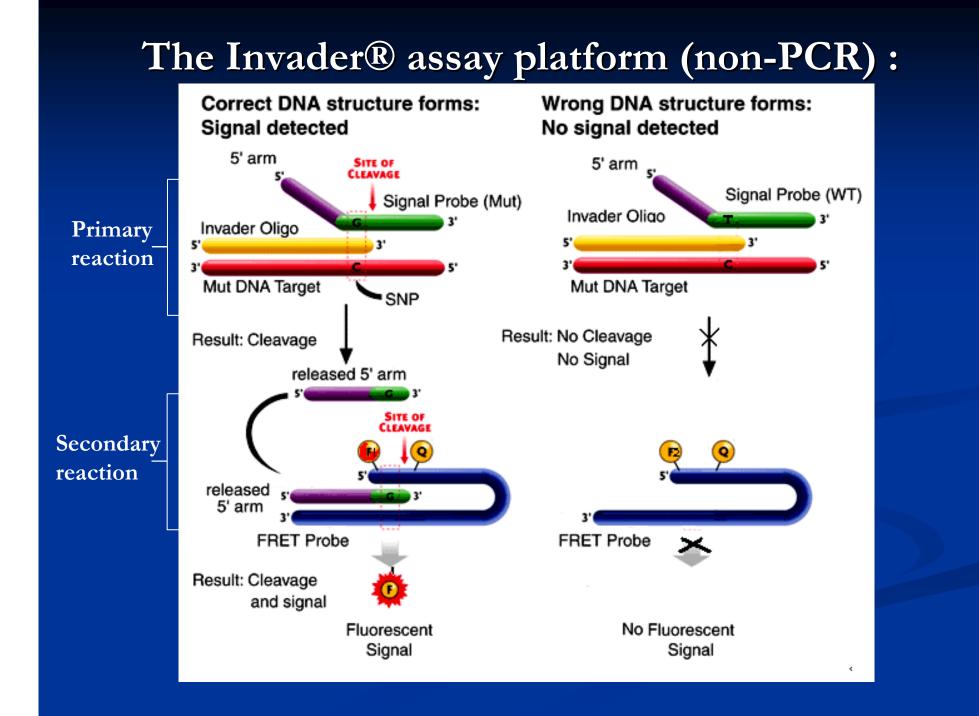
Methodology:

The RFLP method (PCR based):

Factor V Leiden:

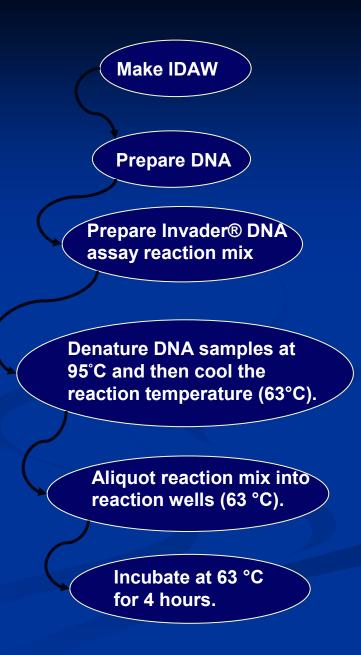
Restriction enzyme = Mnl I

(loss of restriction site)


Undigested No DNA Normal Homozygous Heterozygous Factor II:

Restriction enzyme = Hind III

(Use of mutagenic primer and G > A creates restriction site)


Undigested No DNA Heterozygous Normal

Invader® assay platform:

(Third Wave technologies)

- >100ng of DNA is needed
- 96 well plate format.
- biplex format F (WT) and R (Mut) signal
- Controls include a Normal, Heterozygote and Homozygote
- Fluorescence analysed using a 96 well plate reader (CytoFluor 96 well plate reader).
- An excel worksheet (IDAW) is used to calculate the net signal/ background or net fold over zero (FOZ).
- Ratio of the WT reaction to the mutant reaction.
 - Heterozygous = >0.3 to <3
 - Homozygous = <0.2
 - Normal = >5
- Total assay time = ~ 5 hours (hands on time = 30-45min)

Results:

IDAW:

Data File Date Stamp:											
F Signal	Date Stamp:					Raw Data					
(Mut)	1	2	3	4	5	6	7	8	9	10	11
A	259 684	211									
B C	909	285 232									
Ď	294	217									
E	349 318	199 212									
F G	1508	212									
Ĥ	352	417									
R Signal (WT)	1	2	3	4	5	6	7	8	9	10	11
A	534	1678									
B C	540 245	227 2210									
D	253	911									
E	400	1026									
F	686 1374	1174 1495									
G H	1374	847									
						Lot Numbers				FVL (1691) Control 1 (V	(T)
Operator:	Date:	DNA Reactio	n Buffer 1 (i	30				ET R Cassette (R)	0	FVL (1691) Control 1 (M FVL (1691) Control 2 (H	
oly2		FVL (1691) I						ET F Cassette (F)		FVL (1691) Control 3 (M	
		FVL (1691) I						zyme 40 ng/µl (E)		Control 4 (No Target Bla	
			Invader Data Analysis - FVL (G1691A) Biplex Assay					Version 040202			
	Invader					Net F Signal	Net R Signal				
Sample	Genotype	F Signal	R Signal	F Signal FOZ	R Signal FOZ	FOZ	FOZ	RATIO	Data	Action	
FVL (1691)											
Control 1	WT	259	534	0.88							
		200		0.00	2.11	0.04	1.11	27.767	VALID	NONE	
EVI (1691)											
FVL (1691) Control 2	HET	684	540	2.33	2.11	1.33	1.11	0.855	VALID	NONE	
Control 2		684	540	2.33	2.13	1.33	1.13	0.855	VALID	NONE	
Control 2 FVL (1691)	HET MUT										
Control 2 FVL (1691) Control 3		684 909	540 245	2.33	2.13	1.33	1.13	0.855	VALID	NONE	
Control 2 FVL (1691)		684	540	2.33	2.13	1.33	1.13	0.855	VALID	NONE	
Control 2 FVL (1691) Control 3	MUT EQ1	684 909	540 245	2.33	2.13 0.97 1.58	1.33	0.04	0.855	VALID VALID VALID INVALID	NONE NONE NONE REPEAT SAMPLE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul)	MUT EQ1 WT	684 909 294 349 318	540 245 253 400 686	2.33 3.09 1.19 1.08	2.13 0.97 1.58 2.71	1.33 2.09 0.19 0.08	1.13 0.04 0.58 1.71	0.855 0.019 3.106 20.965	VALID VALID VALID INVALID VALID	NONE NONE NONE REPEAT SAMPLE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul)	MUT EQ1	684 909 294 349	540 245 253 400	2.33 3.09 1.19	2.13 0.97 1.58	1.33 2.09 0.19	0.04	0.855	VALID VALID VALID INVALID	NONE NONE NONE REPEAT SAMPLE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10	EQ1 WT HET WT	684 909 294 349 318	540 245 253 400 686 1374 1302	2.33 3.09 1.19 1.08 5.13 1.20	2.13 0.97 1.58 2.71 5.43 5.15	1.33 2.09 0.19 0.08 4.13 0.20	1.13 0.04 0.58 1.71 4.43 4.15	0.855 0.019 3.106 20.965 1.073 21.017	VALID VALID VALID INVALID VALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9	MUT EQ1 WT HET	684 909 294 349 318 1508	540 245 253 400 686 1374	2.33 3.09 1.19 1.08 5.13	2.13 0.97 1.58 2.71 5.43	1.33 2.09 0.19 0.08 4.13	1.13 0.04 0.58 1.71 4.43	0.855 0.019 3.106 20.965 1.073	VALID VALID VALID INVALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10 11 12	EQ1 WT HET WT	684 909 294 349 318 1508 352	540 245 253 400 686 1374 1302	2.33 3.09 1.19 1.08 5.13 1.20	2.13 0.97 1.58 2.71 5.43 5.15	1.33 2.09 0.19 0.08 4.13 0.20	1.13 0.04 0.58 1.71 4.43 4.15 5.63 0.04	0.855 0.019 3.106 20.965 1.073 21.017	VALID VALID VALID INVALID VALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10 11	EQ1 WT HET WT WT	684 909 294 349 318 1508 352 211	540 245 253 400 686 1374 1302 1678	2.33 3.09 1.19 1.08 5.13 1.20 0.72	2.13 0.97 1.58 2.71 5.43 5.15 6.63	1.33 2.09 0.19 0.08 4.13 0.20 0.04	1.13 0.04 0.58 1.71 4.43 4.15 5.63	0.855 0.019 3.106 20.965 1.073 21.017 140.810	VALID VALID VALID INVALID VALID VALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10 11 12	MUT EQ1 WT HET WT WT	684 909 294 349 318 1508 352 211 285	540 245 253 400 686 1374 1302 1678 227	2.33 3.09 1.19 1.08 5.13 1.20 0.72 0.97	2.13 0.97 1.58 2.71 5.43 5.15 6.63 0.90	1.33 2.09 0.19 0.08 4.13 0.20 0.04 0.04	1.13 0.04 0.58 1.71 4.43 4.15 5.63 0.04	0.855 0.019 3.106 20.965 1.073 21.017 140.810 1.000	VALID VALID VALID INVALID VALID VALID VALID VALID INVALID	NONE NONE REPEAT SAMPLE NONE NONE NONE REPEAT SAMPLE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10 11 12 13	MUT EQ1 WT HET WT WT WT	684 909 294 349 318 1508 352 211 285 232	540 245 253 400 686 1374 1302 1678 227 2210	2.33 3.09 1.19 1.08 5.13 1.20 0.72 0.97 0.79	2.13 0.97 1.58 2.71 5.43 5.15 6.63 0.90 8.74	1.33 2.09 0.19 0.08 4.13 0.20 0.04 0.04 0.04	1.13 0.04 0.58 1.71 4.43 4.15 5.63 0.04 7.74	0.855 0.019 3.106 20.965 1.073 21.017 140.810 1.000 193.379	VALID VALID VALID INVALID VALID VALID VALID VALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE NONE REPEAT SAMPLE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10 11 12 13 19	MUT EQ1 WT HET WT WT WT WT	684 909 294 349 318 1508 352 211 285 232 217	540 245 253 400 686 1374 1302 1678 227 2210 911	2.33 3.09 1.19 1.08 5.13 1.20 0.72 0.97 0.79 0.74	2.13 0.97 1.58 2.71 5.43 5.15 6.63 0.90 8.74 3.60	1.33 2.09 0.19 0.08 4.13 0.20 0.04 0.04 0.04 0.04	1.13 0.04 0.58 1.71 4.43 4.15 5.63 0.04 7.74 2.60	0.855 0.019 3.106 20.965 1.073 21.017 140.810 1.000 193.379 65.020	VALID VALID VALID INVALID VALID VALID VALID VALID VALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE NONE REPEAT SAMPLE NONE NONE	
Control 2 FVL (1691) Control 3 Control 4 66(4ul) 6(4ul) 9 10 11 12 13 19 15	EQ1 WT HET WT WT WT WT WT	684 909 294 349 318 1508 352 211 285 232 217 199	540 245 253 400 686 1374 1302 1678 227 2210 911 1026	2.33 3.09 1.19 1.08 5.13 1.20 0.72 0.97 0.79 0.74 0.68	2.13 0.97 1.58 2.71 5.43 5.15 6.63 0.90 8.74 3.60 4.06	1.33 2.09 0.19 0.08 4.13 0.20 0.04 0.04 0.04 0.04 0.04 0.04	1.13 0.04 0.58 1.71 4.43 4.15 5.63 0.04 7.74 2.60 3.06	0.855 0.019 3.106 20.965 1.073 21.017 140.810 1.000 193.379 65.020 76.383	VALID VALID VALID INVALID VALID VALID VALID VALID VALID VALID VALID VALID VALID	NONE NONE NONE REPEAT SAMPLE NONE NONE NONE REPEAT SAMPLE NONE NONE NONE	

Factor V and Factor II Invader results:

	Factor V	Factor II
Number of samples	110	110
Normal	71	98
Heterozygous	33	9
Homozygous	2	0
Fails	4 (3.6%)	3 (2.7%)
% Repeated	5.5%	3.6%
% Concordance	100%	100%

Discussion:

The genotypes obtained from the Invader® assay showed 100% concordance to the RFLP method showing that it is suitable for use in diagnostic molecular genetics.

<u>Repeated samples:</u> Factor V 5.5% and Factor II 3.6%.

Possible reasons:

- Low signal as a result of low DNA concentration meaning the patient sample doesn't exceed the background fluorescence seen in the no target blank control.
 - when repeated with more DNA the correct genotype was obtained.
- Failed samples: Factor V 3.6% and Factor II 2.7%.
- The samples that could not be genotyped were due to a low DNA concentration.

- 50 /110 samples tested were from Southampton Human genetics unit (total volume 10-15µl).
- All failed samples were from this source and could not be quantified or genotyped due to sample being depleted.

Comparison of Invader and RFLP:

	RFLP	Invader platform
Total time	7-25 hours	4-5 hours
Hands on time	2-3 hours	<45 mins
Number of steps	8	4
	1: Prepare sample	1: Prepare sample
	2: Make master mix	2: Make master mix
	3: Make digest mix	3: Add master mix to plate
	4: Add digest mix to samples	4: Read plate
	5: Restriction digest	
	6: Pour gel	
	7: Load gel	
	8: Image gel	
Analysis	Gel (subjectivity)	Excel spreadsheet (IDAW)
Visualisation	EtBr (mutagenic)	FRET (fluorescence)

Cost per test:

Invader assay platform = $\pounds 8$ per result

 $RFLP = Approx. \pounds 2-3$

However, the Invader assay requires the use of a flourescence plate reader which costs around $\pounds 9000$

Other applications of the Invader assay platform:

- Cystic fibrosis testing
- Connexin 26
- MTHFR (methylenetetrahydrofolate reductase)
- ApoE
- Hexosaminidase A (Tay Sachs)

Conclusion:

- The invader offers cheap, rapid detection of SNP's
- Highly reproducible results with 100% concordance to existing methods.
- It is non-PCR based.
- Can test up to 92 samples at once
- Wide applications to other areas of molecular diagnostics.
- Highly dependant on template concentration as it affects the reaction dynamics and overall signal strength. However, 120/120 tests on DNA from our lab worked first time.
- More expensive than the existing RFLP method but is less labour intensive and is more rapid with results in ~ 5 hours.