

Health Technology Assessment of the Nanogen® Molecular Biology Workstation and Pyrosequencing™ PSQMA System

Helen White

National Genetics Reference Laboratory (Wessex) Salisbury District Hospital

Nanogen® Molecular Biology Workstation

October 2002 – August 2003

Automated multi-purpose instrument which uses the NanoChip® Electronic Microarray for:

- SNP detection
- STR analysis
- gene expression
- unknown mutation screening

3 major subsystems

NanoChip® Loader:

96 patient samples loaded onto 1 - 4 NanoChip® Cartridges

Computer hardware and software: automates import, analysis and export of data

NanoChip® Reader:

laser-based fluorescence scanner for detection of assay results

NanoChip® Electronic Microarray Structure: Microelectrode and Permeation Layer

Charged molecules placed at specific test sites on a NanoChip® microarray:

Connections (platinum wires)

NanoChip* Cartridge

NanoChip® Electronic Microarray Structure:

Electronic Addressing

- One or more sites is electronically activated
- The sample is electronically guided to the test site(s)
- The biotinylated sample then binds to the streptavidin
- The pH at each test site is controlled electrochemically allowing for binding at only specified sites.

Effect of Histidine Buffer On Hybridization

Positive charge is applied:

Water is oxidized into oxygen gas and H+ ions at the microelectrode surface

Neutral histidine becomes Histidine+

The Histidine + neutralizes the negatively charged phosphate backbone of the DNA, allowing hybridization to occur.

How does SNP Detection Work?

Examples of formats for data output

	Results for factorV (27 scan, 1024, low)								
Sample	Red	Green	Pads	Ratio (R::G)	Probe Designation				
1	187.56	218	1	1 :: 1.16	snp/wt				
32	407.86	402	1	1.01 :: 1	snp/wt				
34	407.86	398	1	1.02 :: 1	snp/wt				
36	392.98	377	1	1.04 :: 1	snp/wt				
52	5.95	416	1	1 :: 69.87	wt/wt				
55	11.91	479	1	1 :: 40.22	wt/wt				
58	26.79	727	1	1 :: 27.13	wt/wt				
60	14.89	628	1	1 :: 42.19	wt/wt				
61	547.79	15	1	36.52 :: 1	snp/snp				
62	666.87	18	1	37.05 :: 1	snp/snp				
Het Cont	390	390	1	1 :: 1	snp/wt				
NT	N/A	N/A	0	N/A	N/A				

- 140	resce	nce Sc	an Res	ults:						
-r	1	2	3	4	5	6	7	8	9	10
1	$\frac{161}{319}$	273	349 214	382 178	497	25 494	20 490	21 481	17 478	15 399
2	19	22 042	(400 32	27 285	18	47 552	22 307	594 594	33 496	22 444
э	37 461	120	75 583	49	146 611	94 587	95 549	104	83 527	65 549
4	102 520	104	95 536	03 461	(481) 59	121 542	$\frac{71}{510}$	21 167	107	18
5	149 520	111 525	103 419	109 506	94 484	111 552	111 559	106	17 220	<u>57</u> 565
6	62 405	35	66 603	$\frac{96}{197}$	(498) 71	91 488	(77 545)	411 37	457 38	121
7	101 123	208	244 102	572 64	31 17	15	-	-	-	-
8	-	-	-	-	-	-	-	-	-	-
9	-	-			-	-		_	-	
10	-	-		-	-	-	-	-	-	-

Pyrosequencing[™] PSQMA System

May 2003 – ongoing

Real time sequencing method for the analysis of short to medium length DNA sequences. Can be used for many applications including:

- > SNP analysis
- Allele frequency quantification
- STR analysis
- CpG methylation analysis
- Gene dosage
- Microbiological typing

Evaluation of SNP detection

> 90 DNA samples were genotyped using triplex PCR assays for Factor V Leiden G1691, Prothrombin G20210A and MTHFR C677T.

Samples had been previously genotyped using PCR RFLP analysis by Molecular Pathology Unit at Southampton General Hospital

> 50 DNA samples were genotyped for six mitochondrial mutations and the degree of heteroplasmy was also determined.

Samples had been previously genotyped using PCR RFLP analysis by Oxford Medical Genetics Laboratory

SNP Detection for FV / FII / MTHFR

90 DNA samples were genotyped using triplex PCR assays

•
e

Detection and estimation of heteroplasmy

Pyrosequencing is less expensive and more efficient than the Nanogen System:

- system costs 36% less expensive
- > analysis costs 58% less expensive
- ➢ total run time - 67% faster

Conclusions for SNP detection

SNP Detection

- Both technologies accurate for SNP genotyping
- > Pyrosequencer faster and cheaper
- > Pyrosequencer had lower failure rate

Detection and estimation of Heteroplasmy

- > Both technologies provided accurate genotyping
- > Pyrosequencing more accurate at estimating heteroplasmy
- > Pyrosequencer more efficient and economical

Detection of trisomy 13, 18 & 21 and sex chromosome aneuploidy for prenatal diagnosis using Pyrosequencing[™] technology

In collaboration with Prof Antonarakis and Sam Deutsch (University of Geneva)

Existing fast screening techniques for detection of aneuploidy

Interphase fluorescent in situ hybridisation (FISH)

- labour intensive
- 50 100 interphases need to be scored

Quantitative fluorescent PCR (QF-PCR)

- relies on amplification of polymorphic microsatellite repeats
- less expensive than FISH
- many samples can be treated in parallel
- Multiple markers need to be analysed to ensure that at least 2 informative markers can be analysed for each individual
- Requires optimisation of multiplex PCRs

Multiplex Ligation probe amplification (MLPA)

- simultaneous analysis of up to 40 loci
- 8 probes per chromosome needed for reliable results
- Still under evaluation

Detection of aneuploidy using paralogous gene quantification by Pyrosequencing[™]

- Paralogous sequences are located on different chromosomes
- High sequence identity but will accumulate sequence differences over time
- PCR primers are designed to co-amplify paralogous sequences located on different chromosomes
- PCR products (of identical size) will contain a number of sequence differences
- Known as paralogous sequence mismatches (PSM)
- Quantification of PSMs can be used to determine the dosage of chromosomes in which the paralogous sequences are located

Paralogous gene quantification

The ratio of the SNPs reflects the relative frequency of the chromosomes tested.

Initial Analysis of trisomy 21 assays

Data from 103 normal controls and 73 Trisomy 21 samples

Combined data from three trisomy 21 assays

Distribution of % Chr 21 using Combined data for three assays

Mathematical model to assign % risk based on AQ frequency

 To minimise the impact of inter assay variation a mathematical model has been devised which assigns a probability of the patient sample being trisomic based on the % AQ frequency

• At least 10 normal and 10 known trisomy controls are run per batch of tests

The mean and standard deviation of the two populations are normalised and used to determine a probability of trisomy given a pre-screen risk of 0.5

The AQ percentage value for each assay is entered and the % risk is calculated.

Trisomy 21 Evaluation

Data from 103 normal controls and 73 Trisomy 21 samples

Paralogous gene quantification for prenatal diagnosis of aneuploidy - Conclusions

- Results from analysis of trisomy 21 assays are promising
- Assays are robust, easy to set up and interpret
- Use of the mathematical model alleviates problems of inter assay variation and standardises interpretation of data
- Triploidy, rare chromosomal abnormalities and other structural abnormalities will not be detected
- Continuing analysis for detection of trisomy 13, 18 and sex chromosome aneuploidy using 440 known aneuploid samples (tissue / peripheral blood/ amniotic cultures) and 300+ amniotic fluid samples collected prospectively from diagnostic prenatal lab
- Mathematical model will be extended to included all data and tested for robustness
- Should represent an competetive alternative to other techniques for use in routine diagnostic laboratories

Acknowledgements

Vicky Durston, NGRL (Wessex) Gemma Potts, NGRL (Wessex) Wessex Regional Genetics DNA Laboratory (WRGL) Dr John Harvey, WRGL / NGRL Prof Nick Cross, WRGL / NGRL Monica Petterson, Biotage AB

FV/FII/MTHFR and Mitochondrial Heteroplasmy Louise Lavender, Molecular Pathology Unit, Southampton Anneke Seller & Carl Fratter, Oxford Medical Genetics

Pre Natal Aneuploidy Diagnosis Prof Stylianos E Antonarakis & Samuel Deutsch, University of Geneva Paul Strike, Research and Development Support Unit, SDH