

Automated DNA Extraction

CJ Mattocks, NC Owen, JF Harvey, NCP Cross

18 respondents

- Current extraction
 - Only 4 labs happy with current extraction
 - 1 automated (Reasonably happy)
 - 1 PCR direct from blood
 - 2 difficult to justify cost

Expectations

■ Speed (bench time)	[41]
■ DNA quality (consistency between labs)	[39]
■ Reduce failure rate	[38]
■ Sample tracking	[37]
■ Cost of extraction	[31]

Reduction in bench time

- Expected throughput
 - 3 labs <10
 - 15 labs 10-100 (~20 where detailed)
- Batch size
 - 14 labs 12 per batch
 - 4 labs 48 per batch (+2 depending on requirements)
- Storage
 - All labs preferred tubes

- Sample types
 - Majority of samples EDTA blood
 - 1 lab significant proportion of Lihep
 - 2 labs significant proportion of mouth brush/wash
 - 1 lab significant proportion of tissue
 - 2 labs significant proportion amniotic fluid
 - 1 labs significant proportion of cell culture

Major factor for appropriate automation

- Required Yield
 - <5ug DNA sufficient for 35% samples
 - 5-100ug DNA sufficient for 38% samples
 - 27% samples require >100ug DNA
 - Labs polarised

No consensus

Would you consider using a low volume extraction protocol (200-1000ul blood, yield ≤30ug DNA)?
78%

Assuming the whole process was totally automated, would it be acceptable to mix multiple extractions from a single sample in situations where a large quantity of DNA is required?

- Key factors
 - Reduce bench time
 - Throughputs not particularly high
 - Local variation in sample type
 - No consensus on yield requirements
 - Discussion required regarding acceptable practice