UKNEQAS - Molecular Diagnosis of Haematological Malignancies

BCR-ABL Quantitation Programme

Jane Holden
MDHM Programme

- 110 participants registered
- Organised into 5 sub-programmes:
 - IgH/TCR clonality testing
 - JAK2 V617F status
 - BCR-ABL and AML translocation identification (including t(8;21), t(15;17) and inv(16))
 - BCR-ABL quantitation
 - Post SCT chimerism monitoring
- 2 trials issued per year per sub-programme
BCR-ABL Quantitation Programme

- 63 participants
- K562 (M-BCR) cell-line distributed for BCR-ABL quantitative analysis – lyophilised to ensure RNA stability
- 2 trials issued
BCR-ABLQ Trial 1

- Issued to 39 participants; only 24 returned results
- 1 sample issued – 1% dilution of K562 cells in HEL cells (lyophilised)
- Participants asked to perform quantitative analysis and report M-BCR level
BCR-ABLQ Trial 1

![Bar chart showing the distribution of M-BCRQuantitative Level (%) for different number of participants for BCR control gene, β-GUS control gene, and ABL control gene. The x-axis represents the M-BCR Quantitative Level (%) ranging from 0-5 to 95-100, and the y-axis represents the number of participants. The chart displays the data for each control gene in different ranges.]
BCR-ABLQ Trial 2

- Issued to 63 participants; 55 returned results
- 3 samples issued (lyophilised)
 - 100% K562 sample (diagnostic sample)
 - ~0.4% dilution of K562 in HEL (follow-up sample)
 - 100% HEL sample (negative sample)
- Participants asked to perform quantitative analysis and report Log reduction in M-BCR at follow-up
BCR-ABLQ Trial 2

Graph to show the distribution of Log reduction results for MDHM BCR-ABLQ

Log Reduction

Number of Participants

0-0.5 0.51-1 1.01-1.5 1.51-2 2.01-2.5 2.51-3 3.01-3.5 3.51-4

Beta-2 microglobulin control gene
G6PDH control gene
BCR control gene
β-GUS control gene
ABL control gene
BCR-ABL Quantitation Results

- Variation in quantitative level due to:
 - Different in-house protocols/kits
 - Different control genes
 - Different material for standard dilutions
<table>
<thead>
<tr>
<th>Method Parameter</th>
<th>Number of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Gene:</td>
<td></td>
</tr>
<tr>
<td>ABL</td>
<td>42</td>
</tr>
<tr>
<td>G6PDH</td>
<td>6</td>
</tr>
<tr>
<td>Beta-2 microglobulin</td>
<td>3</td>
</tr>
<tr>
<td>β-GUS</td>
<td>3</td>
</tr>
<tr>
<td>BCR</td>
<td>1</td>
</tr>
<tr>
<td>Material for Standard Dilutions:</td>
<td></td>
</tr>
<tr>
<td>Commercial Plasmids (Ipsogen)</td>
<td>32</td>
</tr>
<tr>
<td>In-house Plasmids</td>
<td>13</td>
</tr>
<tr>
<td>Serial dilution from K562 DNA</td>
<td>3</td>
</tr>
<tr>
<td>No standards used</td>
<td>4</td>
</tr>
<tr>
<td>No info provided</td>
<td>3</td>
</tr>
</tbody>
</table>
BCR-ABL Quantitation Results

- Variation in quantitative level due to:
 - Different in-house protocols/kits
 - Different control genes
 - Different material for standard dilutions
 - Different instruments and analysis software
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Number of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI 5700</td>
<td>1</td>
</tr>
<tr>
<td>ABI 7000</td>
<td>6</td>
</tr>
<tr>
<td>ABI 7300</td>
<td>2</td>
</tr>
<tr>
<td>ABI 7500</td>
<td>10</td>
</tr>
<tr>
<td>ABI 7700</td>
<td>4</td>
</tr>
<tr>
<td>ABI 7900</td>
<td>8</td>
</tr>
<tr>
<td>Roche Light Cycler</td>
<td>15</td>
</tr>
<tr>
<td>Rotor-Gene</td>
<td>4</td>
</tr>
<tr>
<td>Cepheid Smartcycler</td>
<td>1</td>
</tr>
<tr>
<td>BioRAD Icycler</td>
<td>1</td>
</tr>
<tr>
<td>Stratagene MX3000p</td>
<td>2</td>
</tr>
</tbody>
</table>
UK NEQAS for Leucocyte Immunophenotyping

BCR-ABL IQ Trial 2

![Bar chart showing log reduction for different instruments: ABI 7000, ABI 7500, ABI 7900, Light Cycler, Rotor-Gene.]

Instrument

Log Reduction

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ABI 7000
ABI 7500
ABI 7900
Light Cycler
Rotor-Gene
BCR-ABL Quantitation Results

- Variation in quantitative level due to:
 - Different in-house protocols/kits
 - Different control genes
 - Different material for standard dilutions
 - Different instruments and analysis software
 - RNA/cDNA quality
BCR-ABLQ Trial 2

Control gene copy number (ABL)

Number of participants

Sample 024
Sample 025
Sample 026
BCR-ABL Quantitation Results

- Control gene Ct values vary greatly indicating variation in the quality of RNA/cDNA:
 - ABL 19.93-32.08
 - G6PDH 19.12-35.95
 - β-GUS 22.26-25.76
 - B2M 24.69-25.53
 - BCR 34.98

- Several labs perform RQ-PCR with only one or two replicates

- Quantitative M-BCR level is not expressed in a standard way
BCR-ABL Q Future Work

- Decrease M-BCR level in trial samples
- Introduce scoring system – enables consistently poor performers to be identified
- Introduction of standardisation and guidelines
Acknowledgements

UKNEQAS LI
Viv Granger
Liam Whitby
Alison Whitby
Joanne Antcliffe
Sarah Sardinha
Dr David Barnett
Prof John Reilly

Sheffield Molecular Genetics Service

University of Sheffield Medical School (Haematology dept)

UKNEQAS Genetics SAG

jlholden@btconnect.com

UK NEQAS for Leucocyte Immunophenotyping