A rapid and sensitive assay for detecting the BCR-ABL-T315I kinase domain mutation in chronic myeloid leukaemia

Cytogenetics & MRD Group

Department of Haematology / Hammersmith Hospital

DxS diagnostic innovations

January 2008

Importance of BCR-ABL-T315I KD Mutation Detection

- Emergence of a BCR-ABL clone harbouring KD mutations: the best known mechanism of IM resistance
- Over 45 different KD mutations reported from patients with resistance to IM
- T315I is the most resistant mutation to IM and to all the current available Tyr kinase inhibitors

Different Methods for T315I Screening (sensitivity)

- Direct Sequencing (>20-30%)
- ORFLP (>10%)
- © Enhanced PCR-RFLP (~0.1%)
- Pyrosequencing (>5%)
- **⊙** DHPLC (1-5%)
- MassARRAY genotyping
- **○** Ligation –PCR (0.1-0.05%)

Principle of Scorpion Assay (Unimolecular Format)

Comparison of Fluorescence Emission among Scorpion, Taqman and Molecular Beacon Probes

Materials

- \odot cDNA (5 μ L)
- T315I Assay Reaction mix (19.6μL)
- O Control Reaction mix (19.6μL)
- ⊙ *Taq* (0.4µL)
- Standard

Principle of T315I Scorpion assay

Imperial College

London

2 reactions: 1) T315I specific primer 2) control primer $\Delta Ct = T315I CT - Cont CT$.

Threshold for T315I positivity: Δ CT<11

Study design

 Serial dilution of BCR-ABL-T315I Ba/F3 cells in non mutated BCR-ABL Ba/F3 cells

 34 patient samples proved to be positive by either direct sequencing or pyrosequencing

 27 patient samples proved to be negative by either direct sequencing or pyrosequencing

Detection of BCR-ABL^{T315I} transcripts in limiting dilution experiments

BCR-ABLT315I	ΔCΤ	Pyrosequencing	Direct
Ba/F3 Cell	(Scorpion)		Sequencing
Dilution			
0.1%	13.3	Undetected	Undetected
1%	10	Undetected	Undetected
10%	5.8	Positive	Undetected
20%	4.7	Positive	Undetected
40%	4.4	Positive	Positive
80%	2	Positive	Positive
100%	0.43	Positive	Positive

Summary of samples used to validate the T315I Scorpion assay

Patient material:		
Patients	25	
Total samples	61	
T315I status assessed by direct sequencing/pyrosequencing:		
T315I positive	34	
T315I negative*	27	
T315I status assessed by Scorpion assay:		
T315I positive	34	
T315I negative*	27	

^{*} Including 3 samples with T315A and one sample with F317L

Summary

- Mutation status was correctly assigned in all 61 samples
- OAbsence of false positive/negative results
- OHigh sensitivity
- Practicality of application in diagnosticlab

London

Acknowledgments

Hammersmith Hospital

- Alistair Reid
- Letizia Foroni
- Jane Apperley
- John Goldman
- O David Marin
- Dragana Milojkovic
- MRD Group

DxS diagnostic innovations

- Nicola Thelwell
- O Julie Watson

