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Background

A single nucleotide polymorphism (SNP) in a coding region of DNA that results in an amino acid 

change in the corresponding protein is termed a non-synonymous or missense variant.  Many of these 

variants have been implicated in human disease phenotypes but, in the absence of functional assays, 

the related pathogenicity of many remains unclassified.  A number of in silico tools have been 

developed to predict the effect of missense variants.  Some of these tools are used routinely by 

diagnostic labs to advise clinicians of disease likelihood in the absence of previous evidence.  

The tools can be broadly divided into three groups: sequence and evolutionary conservation-based 

methods, protein sequence and structure-based methods and machine learning methods.  A more 

detailed description of each tool is available at the NGRL Manchester website: 

(http://www.ngrl.org.uk/Manchester/page/missense-prediction-tools) 

Objectives

Using variants of known pathogenicity, we assess a variety of predictive algorithms in a gene-specific 

manner.  We show that optimum predictions are achieved by different tools in different genes and 

that their performance can vary markedly.  We also assess the use of these tools when predictions 

are combined and a consensus taken.  All possible combinations of tools are used in consensus 

predictions and optimum combinations are compared to the currently popular choice of using SIFT, 

PolyPhen-2 and Align-GVGD.  Additionally, in algorithms that require a multiple sequence alignment 

(MSA) as input, we demonstrate the sensitivity of predictions to variations in the alignment.  Here, 

algorithms are shown to be relatively insensitive to commonly used statistical parameters and instead 

predictions remain stable, despite the diversity of aligned orthologues.  However, we also show that, 

in the context of individual missense mutations, the alignment quality and depth are important in 

achieving more accurate predictions of pathogenicity.
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Methods

Algorithms
Thirteen algorithms were tested.  Of these, 11 were run using the default settings and, where 

appropriate, alignments were generated by the individual tool.  The algorithms tested in this way 

were:

 SIFT (Kumar et al. 2009)

 Align-GVGD (Tavtigian et al. 2006)

 Mutation assessor (Reva et al. 2011)

 PANTHER (Brunham et al. 2006)

 PolyPhen-2 (Adzhubei et al. 2010)

 PMut (Ferrer-Costa et al. 2004)

 SNAP (Bromberg et al. 2008)

 MutPred (Li et al. 2009) 

 Hansa (Acharya et al. 2012)

 SNPs&GO (Calabrese et al. 2009)

 CONDEL (González-Pérez and López-Bigas, 2011)

Three algorithms were run locally with user submitted alignments.

 SIFT

 MAPP (Stone et al. 2005)

 Parepro (Tian et al. 2007)

MAPP requires a phylogenetic tree as input as well as a MSA to determine the evolutionary 

relationships between the species.  SEMPHY (Friedman et al 2002) was downloaded and used to 

generate the phylogenetic trees.

Assessment of alignment sensitivity 
The alignments for BRCA1, BRCA2, MLH1 and MSH2 alignments were taken from the Alamut 

(http://www.interactive-biosoftware.com/alamut.html) package.  Of these, the BRCA1 curated 

alignment is used from Align-GVGD whilst the others have been developed by Alamut.  These 

alignments feature 9-12 species (including Human) and have been generated to satisfy suggested 

levels of divergence, in terms of mean substitutions per site and median information content.  

The sensitivity of each of the three algorithms to the alignment given was assessed by generating 

alignments featuring all possible combinations of species with human (Warrender, 2010).  Each of 

these was then used as input for the algorithm and the sensitivity, specificity and MCC of the 
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predictions measured.  The information content and mean substitutions per site of each alignment 

were also calculated and assessed in terms of prediction success. 

Prediction assessment 
Each algorithm was run using subsets of known variants as input and predictions were assessed in 

terms of true positive (TP), true negative (TN), false positive (FP) and false negative (FN).  The 

sensitivity, specificity and Matthew correlation coefficient (MCC) (Matthews, 1975) were calculated. 

Sensitivity =
FNTP

TP


                       Specificity =  

FPTN

TN



MCC =
))()()((

)()(

FNTNFPTNFNTPFPTP

FNFPTNTP





The MCC scores range from +1 (a perfect prediction) to -1 (an inverse prediction) where 0 represents 

an average random prediction.  This measurement has been favoured over ‘accuracy’, as it is less 

sensitive to the different numbers of pathogenic and non-pathogenic variant classes in each gene 

(Baldi et al., 2000).

Results

Prediction success is gene-dependent
Predictions for the missense variants were made for BRCA1, BRCA2, MLH1 and MSH2 (Figure 1).  

Although the variants in this analysis only cover four genes, it is clear that no one algorithm performs 

best.  In terms of sensitivity and specificity, the predictions vary considerably between algorithms 

with different methods achieving very high scores for each.  However, predictions that have high 

sensitivity scores tend to be coupled with low specificity scores (and vice versa) demonstrating the 

trade off between the two and indicating a trend of under- or over-predicting pathogenicity.

Comparison of the MCC scores also demonstrates the variability of prediction success for each gene.  

In general, MCC scores for BRCA2 are very low (mean=0.03) with only SNAP and MutPred achieving 

scores greater than 0.3 and four algorithms having predictions no better than random.  BRCA1, MSH2 

and MLH1 mean MCC scores are higher (0.18, 0.31 and 0.44 respectively) highlighting the variation in 

effectiveness of predictive algorithms in general on individual genes.
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Figure1. The sensitivity, specificity and MCC scores for a variety of predictive algorithms on BRCA1, BRCA2, MLH1 and MSH2 

proteins.  The blue bars in each plot are the mean sensitivity, specificity and MCC scores of the predictions.  The red bars in 

each plot are the user-submitted-alignment algorithms.  Here, the values represent the optimum alignment combination in 

terms of MCC score and are therefore not directly comparable to the other algorithms.  Error bars represent 95% confidence 

intervals calculated over 1000 random subsets of variants.

These predictions are based on exonic variants with high confidence in their pathogenicity 

classification.  It is possible that algorithms that use sequence and evolutionary conservation to 

predict pathogenicity may not correctly interpret variants located on exon boundaries and which may 

be pathogenic due to an influence on splicing.  However, other algorithms that use more complex 

models may take this information into account and, as we are assessing exonic missense variant 

interpretation in general, we chose to include these variants in our predictions.
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Comparison of consensus predictions
It has previously been found that when multiple algorithms give the same prediction, the accuracy of 

the result is improved (Chan et al., 2007).  In practice multiple algorithms can be used to make 

predictions and a consensus prediction taken.  We investigated which algorithms performed optimally 

when used together in this way by taking every possible combination and making predictions on all of 

the available variants. We excluded Parepro from this analysis as predictions were so poor they would 

be unlikely to meaningfully contribute to a consensus prediction.  This resulted in 8178 combinations 

of two or more algorithms that were used to predict pathogenicity, giving a prediction only when a 

consensus was reached.  

In Figure 2 the top five algorithm combinations are shown in comparison to the top five individual 

algorithms run over the same variants.  The algorithms included in each of the five consensus 

combinations are shown in Table 1.  When run over all the variants the best consensus approach 

achieves higher MCC scores than using any of the individual algorithms alone.  The optimum 

combinations commonly include SNPs&GO, MutPred and one other algorithm.

The consensus predictions from SIFT, PolyPhen-2 and Align-GVGD are shown for comparison (Figure 

2) as these tools are commonly used in diagnostic labs.  The top consensus predictions and top 

individual tool predictions perform better than taking the SIFT, PolyPhen-2 and Align-GVGD 

consensus prediction.  As predictions from SIFT and Align-GVGD tend to be ranked among the top 

performing individual algorithms this implies that in these cases predictions are often contradictory, 

with each performing well with certain variants.

ID Algorithms

1 MutPred, SNPs&GO, MAPP

2 MutPred, SNPs&GO, Hansa

3 MutPred, SNPs&GO, SIFT

4 MutPred, SNPs&GO, SIFT*

5 MutPred, SNPs&GO, SNAP

Table 1. The individual algorithms included in the top five consensus predictions over all four genes.

*Algorithms run with user-submitted alignments.
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Figure 2. The success of the top five consensus predictions in comparison with the top five individual algorithms over variants 

from all four genes combined.  The algorithms included in each of these consensus predictions can be seen in Table 1.  Error 

bars represent 95% confidence intervals calculated over 1000 random subsets of variants. *Algorithms run with user-submitted 

alignments.

Key points:
1. The optimum algorithms for predicting variant pathogenicity vary depending on the gene.

2. Over the four genes tested, the top five individual tools in terms of MCC score are Align-

GVGD, SNPs&GO, SIFT, MAPP and PANTHER.

3. For some genes, taking a consensus prediction can give improved results over individual 

algorithms.  

4. The optimum combination of tools for inclusion in a consensus prediction are SNPs&GO, 

MutPred one other algorithm. 

5. When running predictive tools on a gene where the optimum algorithm is unknown it is 

advisable to adopt a consensus approach to predict pathogenicity. 

6. The consensus prediction from SIFT, PolyPhen-2 and Align-GVGD performs less well than the 

top consensus predictions and top individual predictions.
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Analysis of alignment sensitivity
The diversity captured in a MSA can influence the predictions that in silico tools make.  Sites under 

functional constraint will be conserved in an alignment of orthologues whereas sites less crucial for 

function are more able to accommodate sequence variants.  As such, the average number of 

substitutions at positions with non-pathogenic variants should exceed that of sites with known 

pathogenic variants.  This is found to be the case, with the difference between pathogenic and non-

pathogenic sites increasing as more orthologues are added to the alignments (i.e. as more 

orthologues are added to an alignment, the pathogenic sites remain conserved and the non-

pathogenic sites become more and more diverse). 

Despite this relationship, the effect that this increased alignment diversity has on prediction success is 

limited.  Figure 3 shows the relationship between MCC score and the number of sequences in the 

alignment.  There is no clear correlation between them indicating that overall MCC scores are not 

particularly sensitive to the number of orthologues in a MSA and consequently the extra diversity that 

an increased number of orthologues provides.  However, it is worth considering that these overall 

MCC scores may mask the effect of prediction changes at individual sites, an important consideration 

when testing a single missense variant. 
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Figure 3. The relationship between number of sequences in the alignment and MCC scores for all four genes using MAPP, 

SIFT and Parepro algorithms.

Assessment of individual variants can be influenced by alignment 
diversity
Prediction of individual variants can be highly sensitive to the alignment.  Both the number and type 

of orthologues aligned at the mutation site can affect predictions of pathogenicity.  For example, the 

BRCA1 variant S1512I (Box 1) is known to be non-pathogenic but when alignment 1 is used in Align-

GVGD the high degree of conservation at the site indicates that any change would likely be 

pathogenic.  Adding orthologues to the alignment introduces extra diversity and a prediction of non-

pathogenicity.  The reverse situation can also occur where the addition of orthologues can lead to 

pathogenic variants being predicted non-pathogenic due to the extra diversity that more distant 

orthologues can bring.  An example of this can be seen in MLH1 variant S247P.  The orthologous 

sequences from Drosophila melanogaster (fruitfly), Aedes (mosquito) and Saccharomyces cerevisiae

(yeast) introduce more diversity at the site and Align-GVGD consequently predicts a non-pathogenic 
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change.  Here it is important to scrutinise the choice of orthologues to ensure that appropriate 

sequences are aligned whilst bearing in mind that a certain level of overall sequence divergence is 

required.  It should also be noted that Align-GVGD gives the option of setting different alignment 

depths when using their own library alignments.

Hsap DDRWYMHSCSGSLQN

Ptro DDRWYMHSCSGSLQN

Ggor DDRWYMHSCSGSLQN

Ppyg DDRWYMHSCSGSLQN

Mmul EDRWYVHSSSGSLQN

Mmus GSRGSAHGCSRHLQK

Cfam DTRWYVHSCPRSLQD

Btau YNRWYMHS-SRSLQD

Mdom NRVWSPLSRSRTPWE

Hsap DDRWYMHSCSGSLQN

Ptro DDRWYMHSCSGSLQN

Ggor DDRWYMHSCSGSLQN

Ppyg DDRWYMHSCSGSLQN

Mmul EDRWYVHSSSGSLQN

Cfam DTRWYVHSCPRSLQD

A-GVGD prediction = C65 (pathogenic)

 Variant: BRCA1 S1512I – Non-pathogenic

Alignment 1 Alignment 2

A-GVGD prediction = C0 (non-pathogenic)

Hsap -KMNGYISNANYSVK

Ptro -KMNGYISNANYSVK

Mmus -KMNGYISNANYSVK

Rnor -KMNGYISNANYSVK

Btau -KMNGYISNANYSVK

Ecab -KMNGYISNANYSVK

Xlae -KMKGYVTNANYSMK

Drer -KVKGYISNANYSVK

A-GVGD prediction = C65 (pathogenic)

 Variant: MLH1 S247P – Pathogenic

Alignment 1 Alignment 2

A-GVGD prediction = C0 (non-pathogenic)

Hsap KMNGYISNANYSVK

Ptro KMNGYISNANYSVK

Mmus KMNGYISNANYSVK

Rnor KMNGYISNANYSVK

Btau KMNGYISNANYSVK

Ecab KMNGYISNANYSVK
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Key points:
1. Some algorithms require gene-specific multiple sequence alignments as input

2. The more orthologues that are added to a multiple sequence alignment, the greater the 

power to discriminate between sites of pathogenic and non-pathogenic substitutions.  (ie. 

pathogenic sites remain conserved and non-pathogenic sites exhibit increased diversity)

3. Despite this, using alignments featuring greater numbers of orthologues does not lead to 

improved predictions of pathogenicity with these tools when MCC score is calculated over a 

large group of variants

4. Conversely, prediction of individual missense variants can be highly sensitive to the sequence 

diversity at the aligned site and as such, manual inspection of alignment position is 

recommended in order to ensure predictions are as accurate as possible

Recommendations

Use of in silico tools
When using in silico algorithms for assessing missense variants the ‘best’ tool is likely to be different 

depending on the gene.  Where this ‘best’ tool is unknown it is advisable to take a consensus 

prediction.  On the basis of the genes tested here, we would recommend using a consensus 

prediction from MutPred, SNPs&GO and one other algorithm to produce the optimum predictions.  

Taking a consensus from SIFT, PolyPhen-2 and Align-GVGD does not produce the best results.  

Use of MSAs with in silico tools
The algorithms that allow custom MSAs, can display great variability in performance depending on the 

orthologues aligned.  To reduce this variability it is recommended that alignments contain a diverse 

set of orthologues to satisfy statistical considerations.  Although an ‘optimum’ alignment is difficult to 

identify and is likely to vary depending on the variants tested, these alignments must be carefully 

constructed to ensure that the best possible chance is given to achieve correct predictions.  We 

propose that reference alignments should be created and made available through the NGRL 

Manchester website to enable diagnostic labs to have access to standardised datasets.  Further 

information on the use of multiple sequence alignments in missense prediction tools can be found 

here: http://www.ngrl.org.uk/Manchester/page/MSAs         
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